
- 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase líquida. Las propiedades del metano líquido a varias temperaturas pueden ser observadas en la tabla mostrada a continuación. Determine el cambio de entropía del metano líquido al ir de un proceso desde 110 K y 1 MPa a 120 K y 5 MPa:
- a. Usando las propiedades tabuladas.
- b. Suponiendo el metano líquido es una sustancia incompresible.

TABLE 7-1						
Propertie						
Temp., <i>T</i> , K	Pressure, <i>P</i> , MPa	Density, $ ho$, kg/m 3	Enthalpy, <i>h</i> , kJ/kg	Entropy, s, kJ/kg⋅K	Specific heat, c_p , kJ/kg·K	
110	0.5 1.0 2.0 5.0	425.3 425.8 426.6 429.1	208.3 209.0 210.5 215.0	4.878 4.875 4.867 4.844	3.476 3.471 3.460 3.432	
120	0.5 1.0 2.0 5.0	410.4 411.0 412.0 415.2	243.4 244.1 245.4 249.6	5.185 5.180 5.171 5.145	3.551 3.543 3.528 3.486	

Ecuación básica:

$$s_2 - s_1 \cong c_{@T_{prom}} \ln \left(\frac{T_2}{T_1} \right)$$

- 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase líquida. Las propiedades del metano líquido a varias temperaturas pueden ser observadas en la tabla mostrada a continuación. Determine el cambio de entropía del metano líquido al ir de un proceso desde 110 K y 1 MPa a 120 K y 5 MPa:
- a. Usando las propiedades tabuladas.
- b. Suponiendo el metano líquido es una sustancia incompresible.

Desarrollo:

a. Aquí se emplearán las propiedades tabuladas:

Estado 1

$$T_1 = 110 \text{ K}, P_1 = 1 \text{ MPa} \rightarrow s_1 = 4.875 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}, c_{p1} = 3.471 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

Estado 2

$$T_2 = 120 \text{ K}, P_2 = 5 \text{ MPa} \rightarrow s_2 = 5.145 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}, c_{p2} = 3.486 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$\Delta s = s_2 - s_1 = (5.145 - 4.875) \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$\Delta s = 0.27 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$$

- 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase líquida. Las propiedades del metano líquido a varias temperaturas pueden ser observadas en la tabla mostrada a continuación. Determine el cambio de entropía del metano líquido al ir de un proceso desde 110 K y 1 MPa a 120 K y 5 MPa:
- a. Usando las propiedades tabuladas.
- b. Suponiendo el metano líquido es una sustancia incompresible.

Desarrollo:

b. Aquí se supondrá el metano líquido es una sustancia incompresible.

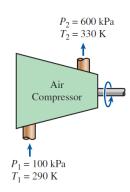
$$s_2 - s_1 \cong c_{@T_{prom}} \ln \left(\frac{T_2}{T_1} \right)$$

$$\Delta s \cong 0.303 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$$

Se supondrá $c_{@T_{prom}} \cong (c_{p1} + c_{p2})/2$.

$$c_{@T_{prom}} \cong \frac{(3.471 + 3.486)}{2} \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$c_{@T_{prom}} \cong 3.4785 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$


$$s_2 - s_1 \cong \left(3.4785 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}\right) \ln \left(\frac{120}{110}\right)$$

- 2. Aire es comprimido desde una estado inicial de 100 kPa y 17°C a un estado final de 600 kPa y 57°C. Determine el cambio de entropía del aire durante este proceso de compresión al usar:
- a. Los valores tabulados encontrados en la tabla A-17.
- b. Empleando calores específicos constantes.

Suposiciones: Aire comportándose como gas ideal.

Ecuaciones básicas:

$$s_2 - s_1 = s_2^0 - s_1^0 - R \ln \left(\frac{P_2}{P_1}\right), s_2 - s_1 = c_{p@T_{prom}} \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{P_2}{P_1}\right), R = c_p - c_v$$

Desarrollo:

a. Se determinarán las propiedades del aire como gas ideal de la tabla A-17.

TABLE A-17						
Ideal	Ideal-gas properties of air					
7	h		И		S°	
K	kJ/kg	P_r	kJ/kg	V_r	kJ/kg·K	
290	290.16	1.2311	206.91	676.1	1.66802	
330	330.34	1.9352	235.61	489.4	1.79783	

Estado 1

$$T_1 = 290 \text{ K} \rightarrow s_1^0 = 1.66802 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

Estado 2

$$T_2 = 330 \text{ K} \rightarrow s_2^0 = 1.79783 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$T_{prom} = \frac{(T_1 + T_2)}{2} \cong 310 \text{ K}$$

A partir de los datos encontrados en la tabla A-2:

TABLE A-2			
Ideal-gas spe	cific heats o	f various con	nmon gases
(b) At various	temperature	S	
Temperature, K	C _p kJ/kg⋅K	c _v kJ/kg∙K <u>Air</u>	<u>k</u>
250 300 350	1.003 (1.005) (1.008)	0.716 0.718 0.721	1.401 1.400 1.398

- 2. Aire es comprimido desde una estado inicial de 100 kPa y 17°C a un estado final de 600 kPa y 57°C. Determine el cambio de entropía del aire durante este proceso de compresión al usar:
- a. Los valores tabulados encontrados en la tabla A-17.
- b. Empleando calores específicos constantes.

Desarrollo:

$$\begin{split} c_{p@T_{prom}} &\cong \left(\frac{310-300}{350-300}\right) (1.008-1.005) \frac{\text{kJ}}{\text{kg} \cdot \text{K}} + 1.005 \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \\ &c_{p@T_{prom}} \cong 1.006 \; \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \end{split}$$

$$c_{v@T_{prom}} \cong \left(\frac{310 - 300}{350 - 300}\right) (0.721 - 0.718) \frac{\text{kJ}}{\text{kg} \cdot \text{K}} + 0.718 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$
$$c_{v@T_{prom}} \cong 0.719 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$R = c_p - c_v \cong (1.006 - 0.719) \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$R \cong 0.287 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$s_2 - s_1 = s_2^0 - s_1^0 - R \ln \left(\frac{P_2}{P_1} \right)$$

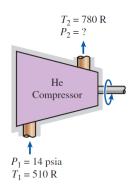
- 2. Aire es comprimido desde una estado inicial de 100 kPa y 17°C a un estado final de 600 kPa y 57°C. Determine el cambio de entropía del aire durante este proceso de compresión al usar:
- a. Los valores tabulados encontrados en la tabla A-17.
- b. Empleando calores específicos constantes.

Desarrollo:

$$s_2 - s_1 \cong (1.79783 - 1.66802) \frac{kJ}{kg \cdot K} - \left(0.287 \frac{kJ}{kg \cdot K}\right) \ln\left(\frac{600}{100}\right)$$

$$\Delta s \cong -0.3844 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$$

b. Empleando calores específicos constantes:


$$\begin{split} s_2 - s_1 &= c_{p@T_{prom}} \ln \left(\frac{T_2}{T_1} \right) - R \ln \left(\frac{P_2}{P_1} \right) \\ s_2 - s_1 &\cong \left(1.006 \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \right) \ln \left(\frac{330}{290} \right) - \left(0.287 \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \right) \ln \left(\frac{600}{100} \right) \\ \Delta s &\cong -\mathbf{0}. \, \mathbf{3842} \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \end{split}$$

3. Helio es comprimido por un compresor adiabático desde un estado inicial de 14 psia y 50°F hasta una temperatura final de 320°F en un proceso reversible. Determine la presión de salida del helio.

Suposiciones: El helio se comporta como gas ideal con calores específicos constantes.

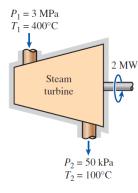
Ecuación básica:

$$\left(\frac{T_2}{T_1}\right)_{s=const.} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k}$$

Desarrollo:

Ideal-gas specific heats of various common gases) (a) At 80°F						
Gas	Formula	Gas constant, R Btu/lbm·R	<i>c_p</i> Btu/lbm⋅R	c _v Btu/lbm⋅R	k	
Air	_	0.06855	0.240	0.171	1.400	
Argon	Ar	0.04971	0.1253	0.0756	1.667	
Butane	C ₄ H ₁₀	0.03424	0.415	0.381	1.09	
Carbon dioxide	CO_2	0.04513	0.203	0.158	1.285	
Carbon monoxide	CO	0.07090	0.249	0.178	1.399	
Ethane	C ₂ H ₆	0.06616	0.427	0.361	1.183	
Ethylene	C ₂ H ₄	0.07079	0.411	0.340	1.208	
Helium	He T	0.4961	1.25	0.753	1.667	
Hydrogen	H ₂	0.9851	3.43	2.44	1.404	

$$P_2 \cong (14 \text{ psia}) \left(\frac{320 + 460}{50 + 460}\right)^{1.667/(1.667 - 1)}$$


$$P_2 \cong 40.49 \text{ psia}$$

- 4. Vapor entra a una turbina a 3 MPa y 400°C y sale a 50 kPa y 100°C. Si la potencia de salida de la turbina es 2 MW, determine:
- a. La eficiencia isoentrópica de la turbina.
- b. El flujo másico del vapor que va a través de la turbina.

Suposiciones: condiciones de estado estable, cambios de energía cinética y potencial despreciable, proceso adiabático.

Ecuaciones básicas:

$$\dot{m}_1 = \dot{m}_2, \qquad \dot{E}_1 = \dot{E}_2, \qquad \eta_T \cong \frac{h_1 - h_{2a}}{h_1 - h_{2s}}$$

Desarrollo:

Estado 1

$$P_1 = 3 \text{ MPa}, T_1 = 400^{\circ}\text{C} \rightarrow h_1 = 3231.7 \text{ kJ/kg}, s_1 = 6.9235 \text{ kJ/kg} \cdot \text{K}$$

P=3.00 MPa (233.85°C)				
ľ	∨ m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg⋅K
ŀ	0.09938	2933.6	3231.7	6.9235

Estado 2, real

$$P_2 = 50 \text{ kPa}, T_2 = 100^{\circ}\text{C} \rightarrow h_{2a} = 2682.4 \text{ kJ/kg}$$

Т	V	и	h	S		
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K		
	(P=0.05 MPa (81.32°C))					
Sat.† 50	3.2403	2483.2	2645.2	7.5931		
100	3.4187	2511.5	2682.4	7.6953		

- 4. Vapor entra a una turbina a 3 MPa y 400°C y sale a 50 kPa y 100°C. Si la potencia de salida de la turbina es 2 MW, determine:
- a. La eficiencia isoentrópica de la turbina.
- b. El flujo másico del vapor que va a través de la turbina.

Desarrollo:

Estado 2, isoentrópico

$$P_2 = 50 \text{ kPa}, s_{2s} = s_1 = 6.9235 \text{ kJ/kg} \cdot \text{K}$$

A partir de los datos encontrados en la tabla A-5:

$$h_{2s} = 2407.9 \,\mathrm{kJ/kg}$$

a. Se determinará la eficiencia isoentrópica de la turbina.

$$\eta_T \cong \frac{h_1 - h_{2a}}{h_1 - h_{2s}}$$

$$\eta_T \cong \frac{3231.7 - 2682.4}{3231.7 - 2407.9}$$

$$\eta_T \cong 0.667$$

b. Se determinará el flujo másico.

$$\dot{E}_1 = \dot{E}_2$$
 $\dot{m}h_1 = \dot{W}_{salida} + \dot{m}h_{2a}$

$$\dot{m} = \frac{\dot{W}_{salida}}{h_1 - h_{2a}}$$

$$\dot{m} \cong \frac{2000 \text{ kW}}{(3231.7 - 2682.4) \text{kJ/kg}}$$

$$\dot{m} \cong 3.64 \frac{\mathrm{kg}}{\mathrm{s}}$$