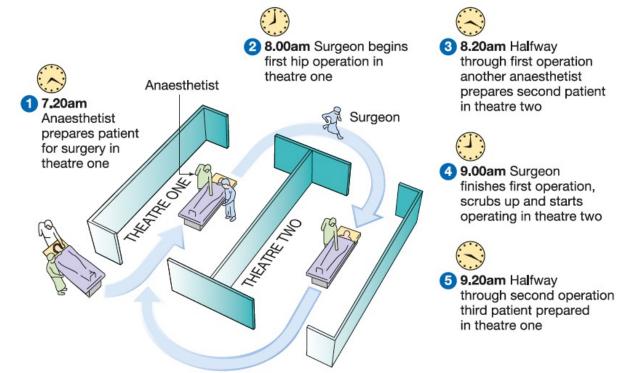
Operations Management

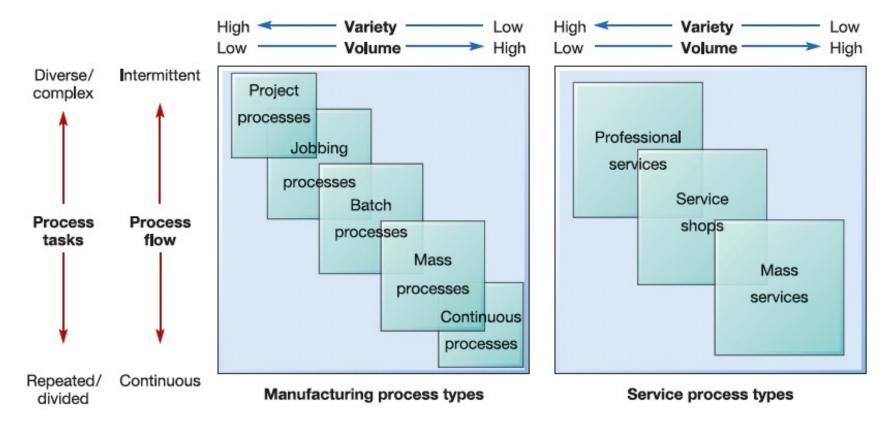

Lecture 4: Process Selection and Facility Layout

TECNOLOGICA FIL SUPERIORI SUPERIORI

Professor: Ricardo Caballero, M.Sc. ⊠ ricardo.caballero@utp.ac.pa

Process selection

- A process strategy is an organization's approach to transforming resources into goods and services.
- The objective is to create a process that can produce offerings that meet customer requirements within cost and other managerial constraints


Process choice is demand driven. The two key questions in process selection are:

- How much variety will the process need to be able to handle?
- How much volume will the process need to be able to handle?

Different process types imply different volume-variety characteristics

- Different process structures provide different capabilities.
- Process structure determines how inputs, activities, flows, and outputs of a process are organized.

Product-process matrix

Categorizes processes into structures based on output volume and variety.

Comparison of Process Types

Process Type	Output Characteristics	Example	Process Characteristics
Project	Unique One of a kind	Custom home Designing a video game	Unique sequencing High complexity Employees and equipment must be flexible Activities are often outsourced to specialists
Job shop	Customized, low volume	Auto repair Beauty salon Copy shop	High variety of inputs and pro- cess flows Job sequencing is challenging High work-in-process inventory Highly skilled, flexible workers General-purpose equipment
Batch	Moderate volume and variety	Bakery Automotive parts Cinema	Dominant flow patterns Some common inputs Setup time can be high Moderately flexible employees and equipment
Repetitive process	Standard products with a range of options	Appliances Automobiles Buffet restaurant	All products follow the same sequence Standard methods and materi- als are used Low-skilled workers specialize in completing a limited num- ber of activities
Continuous process	Commodities with high volume, little variety	Aluminum cans Laundry detergent Gasoline	Products follow sequence Operations often run 24/7 Line stoppages are very costly Highly specialized equipment Low-skilled operators

Source: Shutterstock.com: Ant Clausen
Project

Batch process

Job shop

Repetitive process

Continuous process

Volume and variety influence process choice

_	High variety	Moderate variety	Low variety	Very low variety				Repetitive/	
Low or very	Job Shop					Job Shop	Batch	Assembly	Continuous
low volume	repair shop emergency room				Description	Customized goods or	Semi- standardized	Standardized goods or	Highly standardized goods or services
Moderate		Batch commercial bakery				services	goods or services	services	900000000000000000
volume		classroom lecture			Advantages	Able to handle a wide variety	Flexibility; easy to add or	Low unit cost, high	Very efficient, very high volume
High volume			Repetitive assembly line automatic car wash			of work	change products or services	volume, efficient	
			automatic car wash		Disadvantages	Slow, high cost	Moderate cost	Low flexibility,	Very rigid, lack of
Very high volume				Continuous Flow petroleum refining water treatment		per unit, complex planning and scheduling	per unit, moderate scheduling complexity	high cost of downtime	variety, costly to change, very high cost of downtime

Activity/ Function	Job Shop	Batch	Repetitive	Continuous	Projects
Cost estimation	Difficult	Somewhat routine	Routine	Routine	Simple to complex
Cost per unit	High	Moderate	Low	Low	Very high
Equipment used	General purpose	General purpose	Special purpose	Special purpose	Varied
Fixed costs	Low	Moderate	High	Very high	Varied
Variable costs	High	Moderate	Low	Very low	High
Labor skills	High	Moderate	Low	Low to high	Low to high
Marketing	Promote capabilities	Promote capabilities; semi- standardized goods and services	Promote standardized goods/services	Promote standardized goods/services	Promote capabilities
Scheduling	Complex	Moderately complex	Routine	Routine	Complex, subject to change
Work-in-process inventory	High	High	Low	Low	Varied

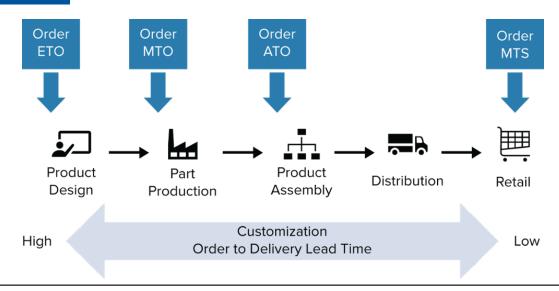
Aligning Process Structure and Market Orientation

There are four different marketing orientations; each delivers a different level of service in terms of lead time and customization.

Unique, customized products that generally have long lead times.

Products that have similar designs but are customized during production.

Products that are produced from standard components and modules.


Assemble to Order (ATO)

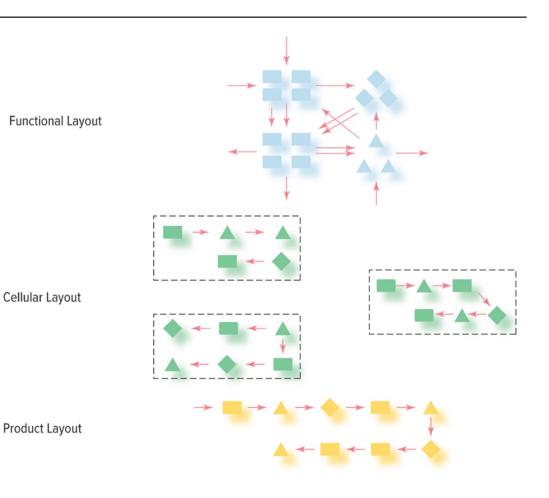
Engineer to Order (ETO)

Make to Order (MTO)

Make to Stock (MTS)

Finished goods that are held in inventory in advance of customer orders.

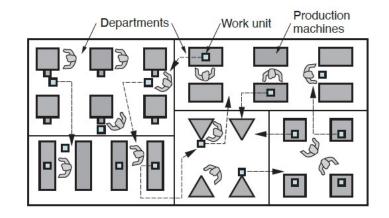
Facility Layout

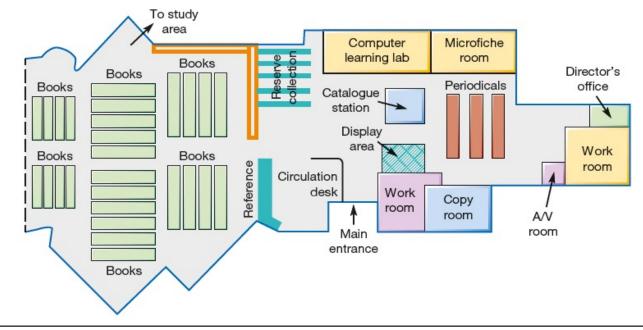

Layout refers to the configuration of departments, work centers, and equipment, with particular emphasis on movement of work (customers or materials) through the system.

The basic objective of layout design is to facilitate a smooth flow of work, material, and information through the system.

General objectives of playout planning:

- To facilitate attainment of product or service quality.
- To use workers and space efficiently.
- To avoid bottlenecks.
- To minimize material handling costs.
- To eliminate unnecessary movements of workers or materials.
- To minimize production time or customer service time.
- To design for safety.


Facility Layout: Functional Layout


A layout that groups together similar resources

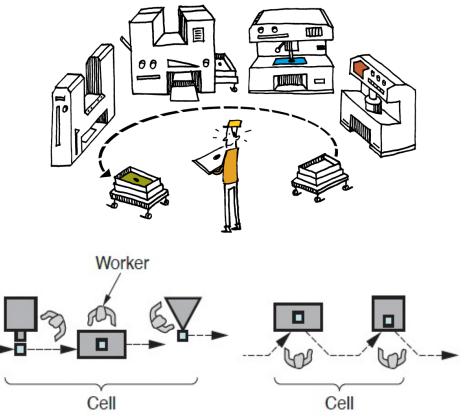
Sometimes called a departmental layout

Some examples are: fitness centers, copy shops, libraries

In manufacturing, Job shops and batch processes often use a functional layout where work centers using the same types of equipment are grouped together.

Facility Layout: Cell Layout

Workstations arranged into small assembly lines to make families of products with similar processing needs.


Layout in which workstations are grouped into a cell that can process items that have similar processing requirements

Groupings are determined by the operations needed to perform the work for a set of similar items, *part or product families*, that require similar processing

The cells become, in effect, miniature versions of product layouts

Enables companies to produce a variety of products with very little waste

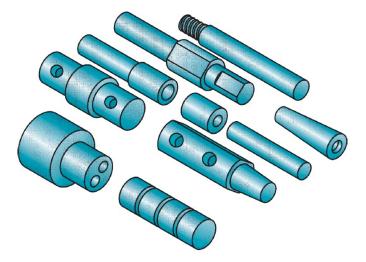
Cells can make job shops or batch processes more efficient, or increase the flexibility of repetitive processes.

Cell Layout: Group Technology

The grouping into part families of items with similar design or manufacturing characteristics

Design characteristics:

- Size
- Shape
- Function


Manufacturing or processing characteristics:

- Type of operations required
- Sequence of operations required

Requires a systematic analysis of parts to identify the part families

A group of parts with similar manufacturing process requirements but different design attributes

Ten parts that are different in size and shape, but quite similar in terms of manufacturing. All parts are machined from cylindrical stock by turning; some parts require drilling and/or milling.

Cell Layout: Balancing Work Cells

Takt time

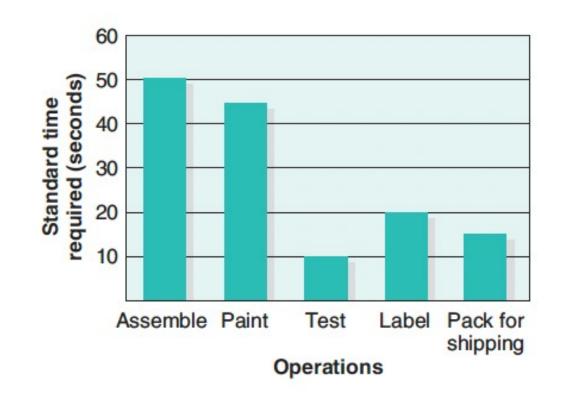
- The maximum allowable cycle time at each workstation.
- Is the cycle time needed in a production system to match the pace of production to the demand rate.
- (similar to cycle time) the time between items emerging from a process, usually applied to 'paced' processes

How to balance a work cell?

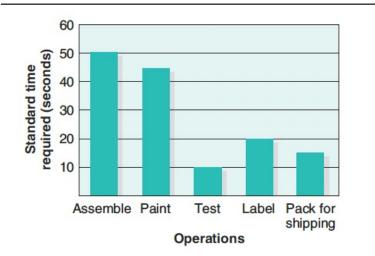
- Determine the takt time 1.
 - Determine the net time available per shift by subtracting any nonproductive time from total a. shift time.
 - If there is more than one shift per day, multiply the net time per shift by the number of shifts to b. obtain the net available time per day.
 - Compute takt time by dividing the net available time by demand. C.
- 2. Determine the number of operators required

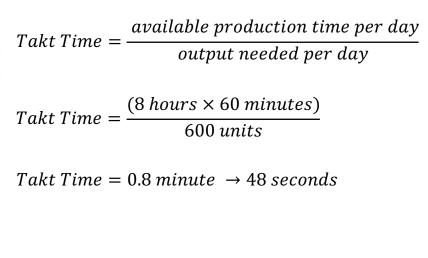
Formulas

Total work time available (available production time per day)


 $Takt Time = \frac{1}{Units required to satisfy customer demand (output needed per day)}$

Total operation time required Workers required = Takt time


Example 1: Balancing Work Cells


Company X makes auto mirrors. The major customer is the Honda plant nearby. Honda expects 600 mirrors delivered daily, and the work cell producing the mirrors is scheduled for 8 hours. Company X develops a work balance chart and wants to determine the takt time and the number of workers required.

Example 1: Balancing Work Cells

 $Workers \ required = \frac{Total \ operation \ time \ required}{Takt \ time}$ $Workers \ required = \frac{50 + 45 + 10 + 20 + 15}{48}$

Workers required = $2.92 \rightarrow 3$

To produce one unit every 48 seconds will require 2.92 people.

With three operators this work cell will be producing one unit each 46.67 seconds (140 seconds/3 employees = 46.67) and 617 units per day (480 minutes available X 60 seconds/46.67 seconds for each unit = 617).

Example 2: Balancing Work Cells

Given the following information, compute the takt time: Total time per shift is 480 minutes per day, and there are two shifts per day. There are two 20-minute rest breaks and a 30 minute excel lunch break per shift. Daily demand is 80 units.

1. Compute net time available per shift:

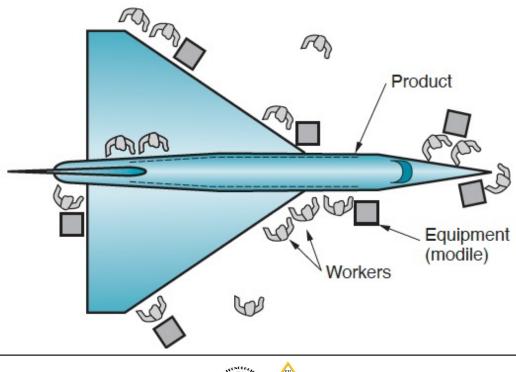
Total time	480 minutes
Rest breaks	- 40 minutes
Lunch	<u>- 30 minutes</u>
	410 minutes per shift

2. Compute the net time available per day

410 minutes per shift X 2 shifts/day = 820 minutes per day

3. Compute the takt time

 $Takt Time = \frac{Net \ available \ time \ per \ day}{Daily \ demand} = \frac{820 \ minutes \ per \ day}{80 \ units \ per \ day} = 10.25 \ minutes \ per \ cycle$



Facility Layout: Fixed – Position Layout

The layout used when the product cannot be moved during production

Fixed-position layouts are typically used for projects involving large products such as homes, buildings, bridges, large ships, airplanes, and spacecraft.

Low – quantity production (1 - 100 units/year)

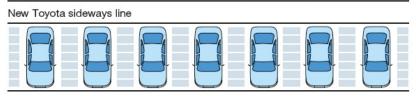
Facility Layout: Product (line) Layout

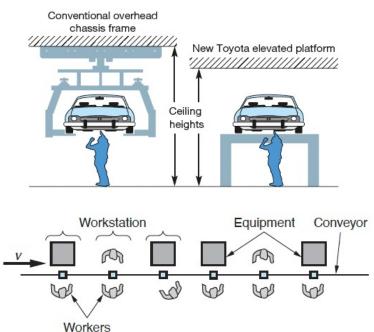
Layout that uses standardized processing operations to achieve smooth, rapid, high-volume flow

A layout where resources are arranged according to a regularly occurring sequence of activities.

The flow of products or customers is visible and easy to trace.

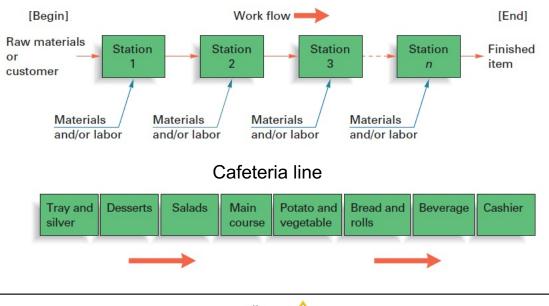
Some examples: automobile assembly, self service cafeteria, mass-immunization programme.


Advantages


- High rate of output
- Low unit cost
- Labor specialization
- Low material handling cost per unit
- High utilization of labor and equipment
- Established routing and scheduling
- Routine accounting, purchasing, and inventory control

Disadvantages

- Creates dull, repetitive jobs
- Poorly skilled workers may not maintain equipment or quality of output
- Fairly inflexible to changes in volume or product or process design
- Highly susceptible to shutdowns
- Preventive maintenance, capacity for quick repair, and spare-parts inventories are necessary expenses
- Individual incentive plans are impractical



Facility Layout: Product (line) Layout

Product layouts are used to achieve a smooth and rapid flow of large volumes of goods or customers through a system. This is made possible by highly standardized goods or services that allow highly standardized, repetitive processing. The work is divided into a series of standardized tasks, permitting specialization of equipment and division of labor.

Production line Standardized layout arranged according to a fixed sequence of production tasks.

Assembly line Standardized layout arranged according to a fixed sequence of assembly tasks.

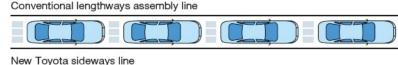
A flow line for production or service

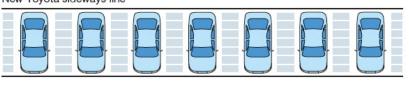
Facility Layout: Product (line) Layout

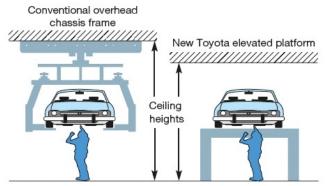
Layout that uses standardized processing operations to achieve smooth, rapid, high-volume flow

A layout where resources are arranged according to a regularly occurring sequence of activities.

The flow of products or customers is visible and easy to trace.


Some examples: automobile assembly, self service cafeteria, mass-immunization programme.


Advantages


- High rate of output
- Low unit cost
- Labor specialization
- Low material handling cost per unit
- High utilization of labor and equipment
- Established routing and scheduling
- Routine accounting, purchasing, and inventory control

Disadvantages

- Creates dull, repetitive jobs
- Poorly skilled workers may not maintain equipment or quality of output
- Fairly inflexible to changes in volume or product or process design
- Highly susceptible to shutdowns
- Preventive maintenance, capacity for quick repair, and spare-parts inventories are necessary expenses
- Individual incentive plans are impractical

Manufacturing Process Type	Potential	Service Process Type	
Project	Fixed-position layout Functional layout	Fixed-position layout Functional layout	Professional Service Service Shop
Jobbing	Functional layout Cell layout	Cell layout	
Batch	Functional layout Cell layout	Functional layout Cell layout	
Mass	Cell layout		
	Product layout	Cell layout	Mass
Continuous	Product layout	Product layout	Service

Assembly Line Balancing

The goal of a product layout is to arrange workers or machines in the sequence that operations need to be performed

Line balancing: the process of assigning tasks to workstations in such a way that the workstations have approximately equal time requirements

Goal:

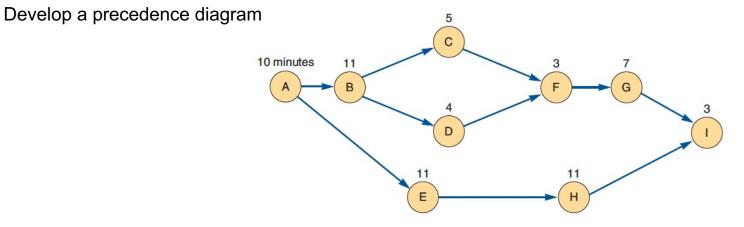
Obtain task grouping that represents approximately equal time requirements, since this minimizes idle time along the line and results in a high utilization of equipment and labor

Why is line balancing important?

- 1. It allows us to use labor and equipment more efficiently
- 2. To avoid fairness issues that arise when one workstation must work harder than another

Steps

- 1. Develop a precedence diagram for the assembly line
- 2. Calculate the Cycle Time
- 3. Calculate the theoretical minimum number of workstations
- 4. Balance the line using one of the line-balancing heuristics



Boeing wants to develop a precedence diagram for an electrostatic wing component that requires a total assembly time of 65 minutes. On the basis of the precedence diagram and activity times, Boeing determines that there are 480 productive minutes of work available per day. Furthermore, the production schedule requires that 40 units of the wing component be completed as output from the assembly line each day. It now wants to group the tasks into workstations.

- a) Develop a precedence diagram
- b) Group the tasks into workstations

TASK	ASSEMBLY TIME (MIN)	TASK MUST FOLLOW TASK LISTED BELOW
A	10	-
В	11	A
С	5	В
D	4	В
E	11	А
F	3	C, D
G	7	F
Н	11	E
I	3	G, H
	Total time 65	

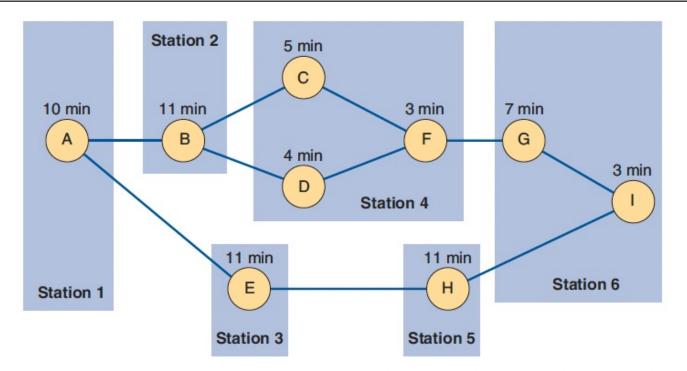
Calculate the cycle time

 $Cycle \ Time = \frac{Production \ time \ available \ per \ day}{Units \ required \ per \ day} = \frac{480 \ minutes}{40 \ units} = 12 \ \ \frac{minutes}{unit} / unit$

Calculate the minimum number of workstations

Minimum number of workstations =
$$\frac{\sum_{i=1}^{n} \text{Time for task } i}{\text{Cycle time}}$$

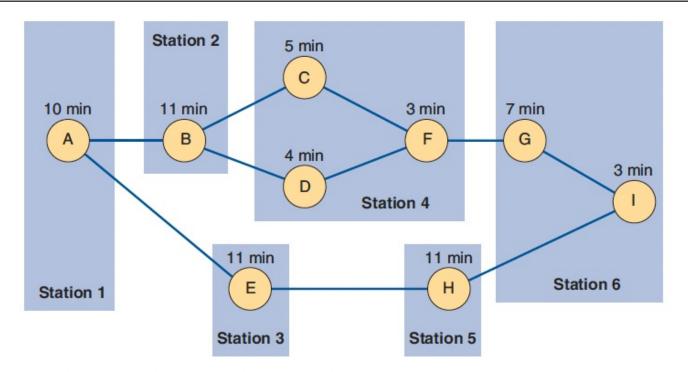
Minimum number of workstations = $\frac{65 \text{ minutes}}{12 \text{ minutes/unit}} = 5.42 \rightarrow 6 \text{ stations}$



Balancing the line

- a. Identify a master list of tasks.
- b. Eliminate those tasks that have been assigned.
- c. Eliminate those tasks whose precedence relationship has not been satisfied.
- d. Eliminate those tasks for which inadequate time is available at the workstation.
- e. Use one of the line-balancing "heuristics"

1. Longest task (operation) time	From the available tasks, choose the task with the largest (longest) time.
2. Most following tasks	From the available tasks, choose the task with the largest number of following tasks.
3. Ranked positional weight	From the available tasks, choose the task for which the sum of the times for each following task is longest
4. Shortest task (operations) time	From the available tasks, choose the task with the shortest task time.
5. Least number of following tasks	From the available tasks, choose the task with the least number of subsequent tasks.



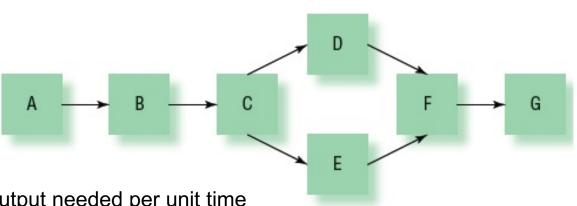
Activities with the most following tasks were moved into workstations to use as much of the available cycle time of 12 minutes as possible

- The second and third workstations use 11 minutes.
- The fourth workstation groups three small tasks and balances perfectly at 12 minutes.
- The fifth has 1 minute of idle time, and the sixth (consisting of tasks G and I) has 2 minutes of idle time per cycle.
- Total idle time for this solution is 7 minutes per cycle.

Determining Line efficiency

 $Efficiency - \frac{65 \text{ minutes}}{(6 \text{ stations})(12 \text{ minutes})} = 90.3\%$

Given the following precedence relationships for sausage and pepperoni pizza assembly. The number of pizzas prepared per day are 200 and the Pizza place operates 8 hrs per day.


- a. What is the takt time?
- b. What is the theoretical number of workstations
- c. Assign the tasks to the workstations to balance the line using the longest operating time rule
- d. What is the efficiency of the line

Task		Predecessors	Time (minutes)
А	Shape the dough to form the crust	None	2
В	Add the pizza sauce	А	1
С	Add the cheese	В	2
D	Add the sausage	С	0.75
E	Add the pepperoni	С	1
F	Package the pizza	D, E	1.5
G	Label the package	F	0.5
		Total Time	8.75

Number of Pizzas per Day: 200 Hours Operating per Day: 8

a. What is the takt time?

Takt time = Available service time/Output needed per unit time

Takt time = [Number of hours/day × 60 min/hour]/Pizza per day

Takt time = [8 hours/day × 60 min/hour]/200 Pizzas per day

Takt time = 0.04 hours

Takt time = 2.4 minutes per workstation

b. What is the theoretical number of workstations?

N = Total number of minutes required to process all tasks per pizza/Number of minutes per station

N = [2 min + 1 min + 2 min + 0.75 min + 1 min + 1.5 min + 0.5 min]/2.4 min per station

N = 8.75 min per pizza/2.4 min per station= 3.7, so round up to 4 workstations

c. Assign the tasks to the workstations to balance the line using the longest operating time rule.

Workstation	Tasks in Order	Workstation Time (minutes)	Idle Time (minutes)
1	A	2	0.4
2	В	1	1.4
3	С	2	0.4
4	E, D	1.75	0.65
5	F, G	2	0.4

d. What is the efficiency of the balanced line?

Efficiency = [Total time per pizza/(Number of workstations needed × Number of minutes per pizza)] × 100 Efficiency = [8.75 minutes needed per pizza/(5 workstations × 2.4 minutes per pizza)] × 100 Efficiency = 0.729 or 72.9 %

References

- Basse, F. (2018). Gestaltung eines adaptiven Änderungssystems f
 ür einen beherrschten Serienhochlauf. Disertaci
 ón doctoral. Apprimus Verlag
- Slack, N., et al. (2016) . Operations Management. Pearson
- Stevenson, W. (2015). Operations Management. McGraw-Hill
- Schroeder et al. (2018). Operations Management in Supply Chain. McGraw-Hill
- Render, B. & Heizer, J. (2014). Principios de administración de operaciones. Pearson
- Render, B. & Heizer, J. (2017). Operations Management: Sustainability and Supply Chain Management. Pearson
- Krajewski et al.(2013). Administración de operaciones, procesos y cadena de suministro. Pearson
- Chase, R. & Jacobs, F. (2014). Administración de operaciones, producción y cadena de suministro. McGraw Hill
- Slack & Lewis (2016). Operations Strategy. Pearson
- Collier & Evans (2016). Administración de operaciones. Cengage
- Ulrich, K. & Eppinger S. (2013) . Diseño y Desarrollo de productos. McGraw-Hill
- Schuh, G. (2012). Innovationsmanagement Handbuch Produktion und Management. Springer Verlag
- Meyers, F. & Stephens, M.. Diseño de instalaciones de manufactura y manejo de materiales. Pearson.
- Christopher (2016). Logistics and Supply Chain Management. Pearson
- Dumas, M. et al. (2018). Fundamentals of Process Management. Springer
- Peña & Rivera. (2016). Administración de procesos. Pearson
- Lovelock, C. et al. Administración de servicios. Pearson
- Johnston et al. Service Operations Management. Pearson
- Kumar, S. & Suresh, N. (2008). Production and Operations Management. New Age International Limited Publishers
- Cuatrecasas, L. (2012). Organización de la producción y dirección de operaciones. Ediciones Díaz de Santos, S.A.
- Gupta, S & Star, M. (2014). Production and operations management systems. Taylor and Francis Group
- Fritzsimmons, J. & Fritzsimmons, M. Service Management. McGraw-Hill

Ricardo Caballero, M.Sc.

References

- Freivalds, A. & Niebel, B. Ingeniería Industrial métodos estándares y diseño del trabajo. McGraw-Hill
- Kalpakjian, S. & Schmid, S. *Manufactura, ingeniería y tecnología.* Pearson
- Groover, M. Fundamentos de manufactura moderna. McGraw-Hill
- Render, B. (2016). *Métodos cuantitativos para los Negocios*. Editorial Pearson.
- Anderson, D. & Sweeny, D. (2019). *Métodos Cuantitativos para los Negocios*. Cengage
- Nahmias, S. (2007). Análisis de la Producción y las Operaciones. McGraw-Hill
- Schlick, C. Arbeitswissenschaft. Springer Verlag
- Rees, M. (2015). Business Risk and Simulation Modeling in Practice. John Wiley & Sons Ltd
- Winston, W. (2017) *Microsoft Excel* 2016 *Data Analysis and Busines Modeling*. Microsoft press
- Swink et al. (2014). Managing operations across the supply chain. McGraw-Hill

Contact

Ricardo Caballero, M.Sc.

Junior Professor Faculty of Industrial Engineering Technological University of Panama

E-mail: ricardo.caballero@utp.ac.pa

https://www.academia.utp.ac.pa/ricardo-caballero

