
Computational compexity

H. R. Alvarez A., Ph. D.

¿What is it ?

 Part of the computational theory that
studies the resources required during
computation to solve a problem.
The commonly studied resources are:

 time (number of execution steps of an algorithm
for solving a problem)

 space (amount of memory used to solve a
problem).

H. R. Alvarez A., Ph. D.

Combinatory complexity

 It is based on the number of components of
a system, or the number of possible
combinations to be performed when making
a decision.

 It is a function of both the variables and the
functions that govern or shape the system

Algorithms and problem solving

 From the Greek and Latin, “dixit algorithmus”,
oritinally from Persian mathematician Al-Khwarizmi

 Informally, an algorithm is a well-defined
computational procedure that takes a set of values
(inputs) and produces a set of values (outputs) using
a sequence of computational steps in the
transformation.

 Prescribed set of well-defined, finite and ordered
rules or instructions, that enables a solution process
through successive steps that generate no doubt who
should perform this activity.

H. R. Alvarez A., Ph. D.

Types of algorithms

 Ordering algorithms:

 Let the input be a sequence of n numbers (𝑎1, 𝑎2,…,
𝑎𝑛)

 The output will be the permutation or ordering (𝑎1
′ ,

𝑎2
′ ,…, 𝑎𝑛

′), such that 𝑎1
′ ≤ 𝑎2

′ ≤,…, ≤ 𝑎𝑛
′

 Search algorithms:

 Let the input be a sequence of n numbers (𝑎1, 𝑎2,…,
𝑎𝑛)

 The output will be a number 𝑎𝑘 such that

𝑎𝑘⊃ {characteristics}

H. R. Alvarez A., Ph. D.

Design and solution techniques

 Greedy algorithms: select the most promising elements of
the set of candidates to find a solution. In most cases the
solution is not optimal.

 Parallel algorithms: allow dividing a problem into sub
problems so that they can run simultaneously on multiple
processors.

 Probabilistic algorithms: some of the steps of such
algorithms are based on pseudo-random values.

 Deterministic algorithms: the behavior of the algorithm is
sequential: each step of the algorithm has only one preceding
step and another successor step.

H. R. Alvarez A., Ph. D.

Design and solution techniques

 Non-deterministic algorithms: the behavior of the
algorithm is a tree and each step of the algorithm can branch to
any number of immediately following steps, plus all the
branches are executed simultaneously.

 Divide and conquer: divides the problem into disjoint subsets
obtaining a solution for each subset. It then unites them,
achieving a solution to the whole problem

 Meta heuristics: It finds suboptimal or approximate solutions
to problems based on prior knowledge (sometimes called
experience).

H. R. Alvarez A., Ph. D.

Design and solution techniques

 Dynamic programming: tries to solve a problem through
different sequential steps, tracking back possible solutions. will
examine the previously solved subproblems and will combine
their solutions to give the best solution for the given problem.

 Branch and bound: Based on the construction of the solutions
to a problem through an implicit tree that runs in a controlled
manner by finding the best solutions.

H. R. Alvarez A., Ph. D.

Properties (no for paralell algorithms)

 Sequential time. An algorithm runs in discretized -step by step
time, thus defining a sequence of "computational" states for each
valid entry.

 Abstract state. Each computational state can be formally
described using a first-order structure and each algorithm is
independent of its implementation

 Bounded exploration. The transition from one state to the next
is completely determined by a fixed and finite description; that is,
between each state and the next you can only take into account a
fixed and limited amount of possible current states

H. R. Alvarez A., Ph. D.

The problem

 The resulting problem of a mathematical
model has three elements:

 The problem: the ultimate question

 Elements: a list of parameters, variables and
relationships, characteristic of the solution

 Instances: parameter values

H. R. Alvarez A., Ph. D.

Type of problems

 Tractables or decidable problems: there
are algorithms capable of optimally
solving them.

 Undecidable or not tractables problems:
there are no algorithms that can
optimally solve them.

H. R. Alvarez A., Ph. D.

Efficiency of an algorithms

 The notation that describes the behavior, as a function of
time, of the excecution of an algorithms, is asymptotically
approximate.

 (f(n)) ={f(n)  𝑐1, 𝑐2, 𝑛0 / 0≤ 𝑐1g(n) ≤ f(n) ≤ 𝑐2g(n)  n
 𝑛0}

 O(f(n)) = {f(n)  𝑐1, 𝑛0 / 0≤𝑐1g(n) ≤ f(n)  n  𝑛0}

 )f(n)) = {f(n)  𝑐2, 𝑛0 / 0≤ f(n) ≤ 𝑐2g(n)  n  𝑛0}

H. R. Alvarez A., Ph. D.
𝑛0

(f(n))

O(f(n))

(f(n))

f(n)

𝑐1g(n)

𝑐2g(n)

Polynomial problems

 One problem is Polynomial (P) if there is a deterministic
polynomial time algorithm to solve it.
 When the running time of an algorithm is less than a certain value

determined in terms of he length of the input variable (n) a problem can be
solved in polynomial time.

 An algorithm is efficient if a problem can be solved such that
the number of steps to resolve grows polynomially depending
on their size.

 Can be approximated to a solution in terms of nk

H. R. Alvarez A., Ph. D.

Non-Polynomial (NP) Problem

 If there is no deterministic polynomial algorithm to solve it.

 A special case are the intractable problems, which include:

 Consistently intractable: Those that are so difficult that not even a
non polynomial time algorithm can solve it.

 Seemingly intractable: The problem is so difficult that an
exponential time is required to find a solution. The solution is so
large that can not be expressed as a polynomial function of the
input.

 Within the class NP "difficult" NP-complete problems as defined
If there is no deterministic polynomial algorithm to solve.

H. R. Alvarez A., Ph. D.

Efficiency of some algorithms

 Simplex O(nk)

 Interior point (Karmakar and others)
O(nlog(n))

 Integer programing NP-Complete

 Branch and bound O(kn)

 TSP NP-Complete

H. R. Alvarez A., Ph. D.

