
Topics in Theoretical Computer Science March 16, 2015

Lecture 5
Lecturer: Ola Svensson Scribes: Mateusz Golebiewski, Maciej Duleba

These lecture notes are partly based on http://theory.epfl.ch/courses/topicstcs/Lecture10.pdf and
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture07.pdf.

1 Introduction

Last lecture:

• Combinatorial Algorithm for maximum cardinality matching (König’s Theorem and Hall’s Theo-
rem)

• Linear programming (Extreme point structure)

Theorem 1 (König 1931) Let M? be a maximum cardinality matching and C? a minimum vertex
cover of a bipartite graph. Then

|M?| = |C?|

Theorem 2 (Hall 1935) Given a bipartite graph G = (A ∪ B,E), there exist matching M s.t. all
vertices in A are matched iff ∀S ⊆ A |S| ≤ |N(S)|, where N(S) = {b ∈ B | ∃a ∈ S with (a, b) ∈ E}

Remark Combinatorial algorithm either finds a matching M that matches all vertices in A or finds
S ⊆ A s.t. |S| ≤ |N(S)|.

2 Linear Programming Duality

2.1 Intuition

Consider the following linear program:

Minimize: 7x1 + 3x2

Subject to: x1 + x2 ≥ 2 · y1
3x1 + x2 ≥ 4 · y2
x1, x2 ≥ 0

We are looking for the optimal solution OPT to this LP. To find the solution we may ask two types of
questions (to find the upper and lower bound on OPT). Is there a solution of cost ≤ 10? (Is OPT ≤ 10)?
Answer to this type of questions is quite simple; we just find a feasible solution to the LP with objective
function ≤ 10 e.g. x1 = x2 = 1. Is there no better solution? (Is OPT ≥ 10)? Let’s observe that we
can bound the objective function using constraints that every feasible solution satisfies. From the first
constraint we get:

7x1 + 3x2 ≥ x1 + x2 ≥ 2

Thus OPT ≥ 2. Similarly from the second constraint we get OPT ≥ 4. To make a better lower bound
we will need to be more clever. Let’s try to take some convex linear combination of the constraints with
coefficients y1, y2 correspondingly. y1, y2 should be non-negative because multiplying a constraint by
negative number would flip the inequality. Taking y1 = 1, y2 = 2 we obtain

7x1 + 3x2 ≥ (x1 + x2) + 2(2x1 + x2) ≥ 2 + 2 · 4 = 10

1

For each constraint of the given LP we associate a dual variable yi denoting the weight of the i-th
constraint. What kind of variables can we take to get a valid lower bound? How should we pick
coefficients to maximize lower bound for OPT? First of all we are interested in lower bounding objective
function. Thus linear combination of primal constraints cannot exceed primal objective function. As
mentioned earlier yi ≥ 0. In this way we get the following (dual) linear program for y1, y2:

Maximize: 2y1 + 4y2 lower bound as tight as possible

Subject to: y1 + 3y2 ≤ 7 x1 coefficient

y1 + y2 ≤ 3 x2 coefficient

y1, y2 ≥ 0

Let’s try now to formalize this approach.

2.2 General case

Consider the following linear program with n variables xi for i ∈ [1, n] and m constraints.

Minimize:
n∑

i=1

cixi

Subject to:
n∑

i=1

Ajixi ≥ bj ∀j = 1, . . . ,m

x ≥ 0

Then, the dual program has m variables yj for j ∈ [1,m] and n constraints:

Maximize:
m∑
j=1

bjyj

Subject to:
m∑
j=1

Ajiyj ≤ ci ∀i = 1, . . . , n

y ≥ 0

Each variable yj in the dual program corresponds to weight of one of constraints from the primal LP.
We have n constraints in dual, one for every primal variable xi.
Remark We showed how to produce dual program for minimization problem. Similar approach works
also for maximization problems. Also every maximization problem can be reduced to a minimization
one. We replace xi with −xi in constraints and objective function obtaining minimization problem.

Remark One can verify that if we take the dual of the dual problem, we get back to the primal
problem, as we should expect. Finding the dual linear program is an automatic procedure.

2.3 Duality Theorems

Let’s focus now on the solutions of both LPs. In our example optimal solutions to primal and dual
problems coincided. We now present two theorems that connect primal and dual solutions.

Theorem 3 (Weak Duality) If x is primal-feasible (meaning that x is a feasible solution to the primal
problem) and y is dual-feasible, then

n∑
i=1

cixi ≥
m∑
j=1

bjyj

2

Proof Let’s rewrite right hand side:

m∑
j=1

bjyj ≤
m∑
j=1

n∑
i=1

Ajixiyj =

n∑
i=1

 m∑
j=1

Ajiyj

xi ≤
n∑

i=1

cixi

Here we used the fact that x, y ≥ 0, otherwise inequality would be in the opposite direction.

This theorem tells us that every dual-feasible solution is a lower bound to any primal solution. This
is intuitive: every primal feasible solution satisfies primal constraints, dual feasible solution gives us a
way of lower bounding primal solution using primal constraints. Moreover from Weak Duality we can
conclude that optimal solution to primal program is lower bounded by optimal solution to dual program.
In fact optimal solutions to primal and duals linear programs coincide, what states the following theorem.

Theorem 4 (Strong Duality) If x is an optimal primal solution and y is an optimal dual solution,
then

n∑
i=1

cixi =
m∑
j=1

bjyj .

Furthermore, if the primal is unbounded (respectively infeasible), then the dual is infeasible (respectively
unbounded).

2.4 Complementarity Slackness

There is a correspondence between primal and dual optimal solutions.

Theorem 5 Let x ∈ Rn be a feasible solution to the primal and let y ∈ Rm be a feasible solution to the
dual. Then

x, y are both optimal solutions ⇐⇒


xi > 0⇒ ci =

m∑
j=1

Ajiyj , ∀i = 1, . . . , n

yj > 0⇒ bj =

n∑
i=1

Ajixi, ∀j = 1, . . . ,m

Proof [An exercise.] We will apply the strong duality theorem to the weak duality theorem proof.

⇒ Let x be the optimal primal solution. From the weak duality theorem proof, we have that:

m∑
j=1

bjyj ≤
m∑
j=1

n∑
i=1

Ajixiyj =

n∑
i=1

 m∑
j=1

Ajiyj

xi ≤
n∑

i=1

cixi. (1)

Here we used the fact that x, y ≥ 0. On the other hand by the strong duality theorem

m∑
j=1

bjyj =

n∑
i=1

cixi

So in (1) there are equalities everywhere. Thus

n∑
i=1

cixi =

n∑
i=1

 m∑
j=1

Ajiyj

xi ⇒ cixi =

 m∑
j=1

Ajiyj

xi for i = 1, . . . n.

3

And finally for every xi i = 1, . . . n.

xi 6= 0 cixi =

 m∑
j=1

Ajiyj

xi ⇒ ci =

 m∑
j=1

Ajiyj


⇐ Similarly to previous part we know that

xici =

 m∑
j=1

Ajiyj

xi, ∀i = 1, . . . , n

yjbj =

(
n∑

i=1

Ajixi

)
yj , ∀j = 1, . . . ,m

Thus
m∑
j=1

bjyj =

m∑
j=1

n∑
i=1

Ajixiyj =

n∑
i=1

 m∑
j=1

Ajiyj

xi =

n∑
i=1

cixi.

The above equality is equivalent to x, y to be optimal solutions to primal and dual linear program.
Indeed for feasible solution x? to primal we have by weak duality theorem:

n∑
i=1

cix
?
i ≥

m∑
j=1

bjyj =

n∑
i=1

cixi.

Thus x is optimal solution to primal program and similarly y is optimal solution to dual.

3 Examples

3.1 Maximum cardinality matching

Let G = (A ∪B,E) be a bipartite graph and let M be a matching. Let xe be a variable corresponding
to taking edge e ∈ M . We want to maximize cardinality of M assuring every vertex has at most one
neighbouring edge in M . Writing those conditions in a form of LP gives us:

Maximize:
∑
e∈E

xe

Subject to:
∑

e=(a,b)∈E

xe ≤ 1 ∀a ∈ A

∑
e=(a,b)∈E

xe ≤ 1 ∀b ∈ B

xe ≥ 0

Thus the dual program looks like this:

Minimize:
∑

v∈A∪B
yv

Subject to: ya + yb ≥ 1 for (a, b) ∈ E
yv ≥ 0

One can easily notice that this LP is vertex cover relaxation.

4

3.2 Minimum cost perfect matching

Let G = (A ∪B,E) be a bipartite weighted graph with weight function c : E → R. Let’s denote cab for
the cost of edge (a, b) with a ∈ A b ∈ B, if there is no such edge in E we set cab = ∞. Let M be a
perfect matching xab be a variable for edge (a, b) ∈M . Every vertex in G is adjacent to exactly one edge
in M . We want to minimize the total cost of edges in M . This leads to the following linear program:

Minimize:
∑

a∈A,b∈B

cabxab

Subject to:
∑
b∈B

xab = 1 ∀a ∈ A∑
a∈A

xab = 1 ∀b ∈ B

xab ≥ 0

And its dual

Maximize:
∑
a∈A

ua +
∑
b∈B

vb

Subject to: ua + vb ≤ cab ∀a ∈ A, b ∈ B

Here we don’t have non-negativity constraints as in primal LP the constraints are given as equalities.
Remark Alternatively we can transform every equality in primal LP to two inequalities (a = b ⇐⇒
a ≤ b∧−a ≤ −b). In dual LP we would obtain a difference of two new non-negative variables for each u.

Let’s take a look at complementarity slackness for minimum cost perfect matching. Complementarity
slackness tells us that if x, (u, v) are feasible then they are both optimal if the following holds:

xab > 0⇒ ua + vb = cab ∀a ∈ A, b ∈ B

ua 6= 0⇒
∑
b∈B

xab = 1 ∀a ∈ A

vb 6= 0⇒
∑
a∈A

xab = 1 ∀b ∈ B

The last two conditions always hold since they follow immediately from the fact that x is primal-
feasible (this is because in this LP we have equalities whereas usually we would only have inequalities).
Remark The last two conditions have 6= instead of > as we don’t have nonnegativity constraints
on u, v. If we consider LP with every equality changed to two inequalities then in dual we would have
two nonnegative variables ua+, ua− ≥ 0 corresponding to each constraint and they can be collapsed:
ua+ − ua− = ua and similarly for v. Then the precondition would be that any of ua+ > 0 or ua− > 0
holds which is stronger than ua 6= 0 and similarly for v (also we don’t need those preconditions to be
equivalent since we are only applying complementarity slackness theorem in one direction).

In other words primal-feasible x? is optimal if ∃ dual solution (u, v) such that

x?ab 6= 0⇒ ua + vb = cab ∀a ∈ A, b ∈ B

We will now use this fact to develop an algorithm for finding minimum cost perfect matching.

4 Minimum cost perfect matching algorithm (Hungarian)

Idea: Maintain a feasible dual solution (u, v). Try to construct a feasible primal solution that satisfies
complementarity slackness and is thus optimal.

5

Algorithm:

• Initialization:
vb = 0, ua = min

b∈B
cab

• Iterative step:

– consider G = (A ∪B,E′) where E′ = {(a, b) : ua + vb = cab} (E is a set of all tight edges)

– find a maximum cardinality matching in G

∗ if it is perfect matching then we are done (this is a primal feasible solution and it satisfies
complementarity slackness, because we chose only from edges in E′ and all of them
satisfied it)

∗ otherwise the algorithm finds S ⊂ A s.t. |S| > |N(S)|
– we can choose small ε > 0 and improve the dual solution:

u′a =

{
ua + ε if a ∈ S
ua if a 6∈ S

v′b =

{
vb − ε if b ∈ N(S)

vb otherwise if b 6∈ N(S).

edges in S ×N(S) were tight and are unchanged (+ε− ε)
edges in (A \ S)× (B \N(S)) are unchanged
edges in (A \ S)×N(S) are decreased by ε
edges in S × (B \N(S)) are increased by ε but they were not tight (they were not in E′)

– dual increases by (|S| − |N(S)|)ε
– we should choose ε as large as possible for which the dual remains feasible, that is

ε = min
a∈S,b/∈N(S)

cab − ua − vb > 0.

Theorem 6 The algorithm runs in time O(n3).

4.1 An alternative proof that the bipartite perfect matching polytope is
integer

We have shown that for any cost function c we can obtain minimum cost perfect matching and it will be
integral. By carefully choosing the cost function, one can make any extreme point of the polytope to be
the unique optimum solution to minimum cost perfect matching problem. This shows that all extreme
points are integral i.e. it is an integer polytope. See Figure 1 for an example.

5 Maximum spanning tree

Given a connected graph G = (V,E) with non-negative edge weights w : E → R≥0.
Find a spanning tree T of maximum weight w(T) =

∑
e∈T w(e).

6

c

Figure 1: Example of a perfect matching polytope and a cost function vector c for the highlighted
vertex.

5.1 Linear programs

Let’s try to find a good LP for this problem. First of all set:

xe =

{
1 if e ∈ T
0 otherwise

A good LP (that we will work with) for the maximum weight forest problem1 is

Maximize:
∑
e∈E

w(e)xe

Subject to:
∑
e⊆S

xe ≤ |S| − 1 ∀S ⊆ V with |S| ≥ 2

xe ≥ 0

And it’s dual program

Minimize:
∑
S⊆V

yS(|S| − 1)

Subject to:
∑

S:e⊆S

yS ≥ w(e) ∀e ∈ E

yS ≥ 0

Remark By complementarity slackness we have that x? is optimal if and only if there exists a feasible
dual solution y? s.t.

x?e > 0⇒
∑

S:e⊆S

y?S = w(e)

y?S > 0⇒
∑
e:e⊆S

x?e = |S| − 1

Now there arises a question: how to use this fact to find maximum weight spanning tree? Or can we
use this in the proof of already known algorithm?
1Note that finding a maximum weight forest is equivalent to finding a maximum weight spanning tree if weights are

positive.

7

5.2 Kruskal’s Algorithm

Repeatedly pick the heaviest edge that does not create a cycle.

5.2.1 Primal and Dual solutions

Kruskal algorithm produces some feasible solution x? to primal LP. Let’s take a closer look to this
solution and try to find a feasible dual solution y? for which we will be able to prove complementarity
slackness and hence get correctness of Kruskal’s algorithm.

Primal solution: Let T be tree returned by Kruskal’s algorithm. Define

x?e =

{
1 if e ∈ T
0 otherwise

Note that
∑

e∈E w(e) · xe = w(T).

a b

c d e

5

2 1.5

10 1

1

13
8

de

ac

cd ab

Figure 2: Example of Kruskal’s Algorithm, the associated tree, and the dual solution.

Dual solution: Let K = {e1, e2 . . . , en−1} be the edges added by Kruskal’s algorithm (they appear
in K in the same order as in Kruskal’s algorithm execution). This naturally induces a tree structure
TK where the cost of a subtree corresponds to the weight of an edge that connected the vertices in the
subtree. Each edge from K corresponds to a vertex in this tree. Parent of every subtree is labelled with
edge that connected this subtree into one connected component. Figure 2 shows an example of Kruskal’s
algorithm execution and associated with it tree TK .
Notation. Let V (ej) be the set of vertices of G occurring in the subtree rooted at ej . Let parent(ej) be
the parent of ej in TK . Define

y?S =

{
w(ej)− w(parent(ej)) if S = V (ej)

0 otherwise

For the root of TK we assume that weight of it’s parent is equal to 0. We have set up x?, y? and we
want to prove that x? is optimal. Due to remark from section 5.1 we are left with proving that y? is a
feasible dual solution, and that the complementarity slackness holds. Let’s start with the second one.

8

5.2.2 Verifying complementarity slackness

First condition Let’s assume y?S > 0. Then S = V (ej) for some j and therefore
∑

e⊆S x
?
e = |S| − 1.

That’s because x?e 6= 0 for e ⊆ S if and only if it’s one of the edges in the associated subtree rooted at
ej . There are |S| − 1 such edges.

Second condition Let’s assume x?e > 0. For every such x?e we have that e = ej ∈ K. So ej corresponds
to a node in TK . Consider path p1, p2 . . . , pk from p1 = ej to the root pk of TK . Then

∑
S:e⊆S

y?S =

k∑
i=1

y?V pi
=

k∑
i=1

w(pi)− w(parent(pi)) = w(ej).

First equality holds as only non-zero y?S are those occurring in TK , then we have telescopic sum.

5.2.3 Feasibility of dual solution

Clearly y? ≥ 0, as we take heavier edges earlier and they correspond to lower vertices in TK . Consider
any edge e ∈ E. Let j be the smallest index s.t. e ∈ V (ej). Consider path p1, p2 . . . , pk from p1 = ej to
the root pk of TK . We have the following

∑
S:e⊆S

y?S =

k∑
i=1

y?V pi
= w(ej) ≥ w(e).

First two transformations are similar to those from last subsection. Last equality holds because e ∈ V (ej)
and Kruskal’s algorithm always adds edge of largest weight.

So in this way we showed that x? and y? satisfy conditions of complementarity slackness and y?

is feasible, thus x? is optimal solution to the primal linear program proving correctness of Kruskal’s
algorithm.

9

