

Mathematical optimization

Optimization models

- Their objective is to select the best decision from a number of possible alternatives, without a complete enumeration of them.
- Optimization theory is a branch of applied mathematics that explains these problems.

Optimization methods: mathematical programming

- Objective:
 - To find the best point that optimizes an economic model
- General formulation:
 - Optimize $y(\mathbf{x})$ Subject to $f(\mathbf{x}) \ge 0 \ \forall i, \mathbf{x} = (x_1, x_2, ..., x_n)$
- Métodos:
 - Analytic methods, Linear Programming, metaheuristics, combinatory methods.

Optimization methods: variational methods

- Objective:
 - To find the best function that optimzes an economic model
- General formulation
 - Optimize I[y(x)] = ∫F[y(x), y'(x)]dx
 Subject to algebraic and mathematical constraints
- Methods:

- Not constrained models
- Its objective is to find the extreme points of a function.
- Teorems:
 - If a fuction is continuous in a closed interval, it has a maxima or minima in the interior or extremes of the interval.
 - A continuous function has a maxima or minima in the interior of a region only if the n derivative is 0 (inflection point) or it doesn't exist (dicountinous point).

- An optima will be local if it has a maxima or minima in the closed interval [a, b]
- An optima will be global is it has a maxima or minima in the interval

$$[-\infty, \infty]$$

 If the local optima is the same as the global optima, then the function has an exact optima)

Sufficient conditions for the optima of an independent variable.

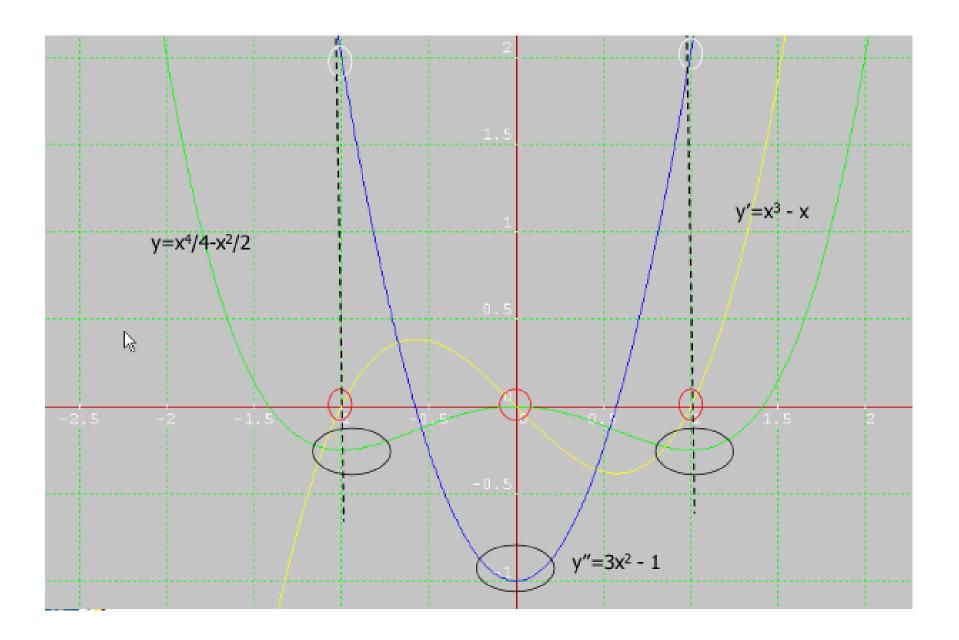
For a continuous function f(x), if:

- $f'(x) \exists \forall x \in \Re$
- X^* is critical in $f'(x^*) = 0$

 Si f"(x*) = 0, the n higher order derivatives are examined until fⁿ(x*) ≠ 0

If n es even:
$$f^{n}(x^{*}) = \begin{cases} > 0 \rightarrow \min \\ < 0 \rightarrow \max \end{cases}$$

If n is odd: saddle point.

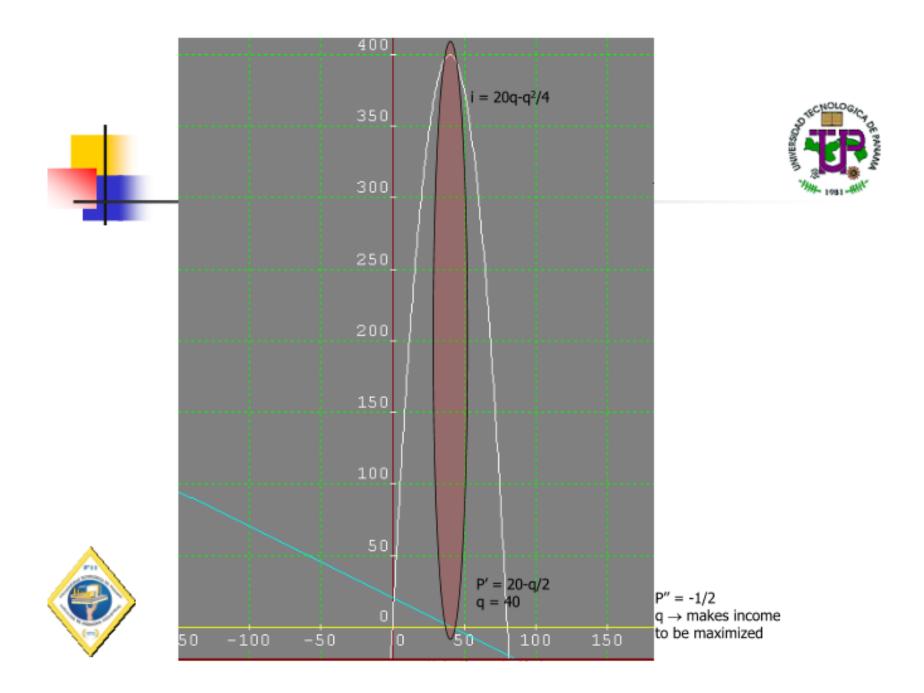


Example:

The price of certain product is given by the following function:

$$p = \frac{80 - q}{4}$$

- Where p is the price y q is the amount sold.
- Fin the value of q that generate a maximum income, considering that income pq.



maximize 20x-x^2/4

■ Examples □ Random

Input interpretation:

maximize

$$20 x - \frac{x^2}{4}$$

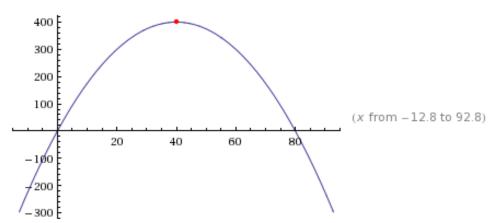
Global maxima:

(no global maxima found)

Local maximum:

$$\max\left\{20 \, x - \frac{x^2}{4}\right\} = 400 \text{ at } x = 40$$

Plot:



The case of a bivariate model

- Ifi z = f(x, y) has a relative maxima and/or minima in (x*, y*) and if f'_x(x, y) y f'_y(x, y) are defined around (x*, y*), then:
- (x^*, y^*) will be a critical point $\inf(x, y)$ if they a $f'_x(x, y) = 0$ solution of the system: $f'_y(x, y) = 0$
- Let $D(x, y) = f''_{x}(x, y) f''_{y}(x, y) [f'_{xy}(x, y)]^{2}$
- If:

$$D(x^*, y^*) = \begin{cases} > 0 \text{ y } f''_x(x^*, y^*) < 0, f(x, y) \text{ has a max in } x^*, y^* \\ > 0 \text{ y } f''_x(x^*, y^*) > 0, f(x, y) \text{ has a min in } x^*, y^* \\ < 0 f(x, y), x^*, y^* \text{ is a saddle point} \\ = 0 f(x, y) \text{ additional analysis is required} \end{cases}$$

maximize $5 + 3x - 4y - x^2 + xy - y^2$

■ Examples ⇒ Random

Input interpretation:

maximize

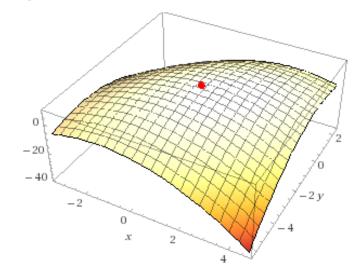
$$5 + 3x - 4y - x^2 + xy - y^2$$

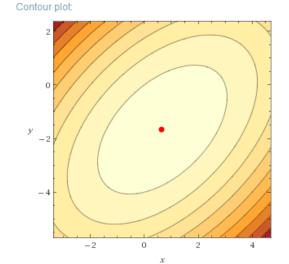
Global maximum:

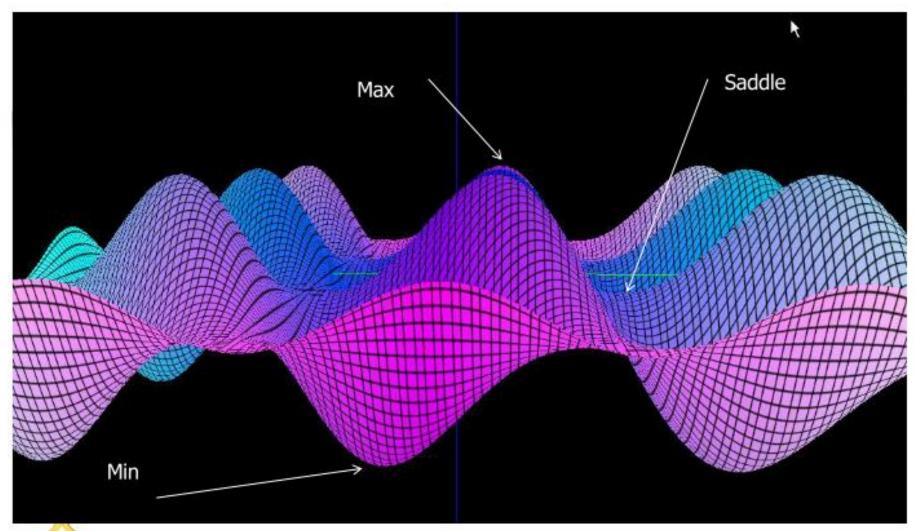
Approximate form

$$\max\{5+3x-4y-x^2+xy-y^2\}=\frac{28}{3}$$
 at $(x, y)=\left(\frac{2}{3}, -\frac{5}{3}\right)$

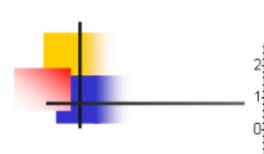
3D plot:

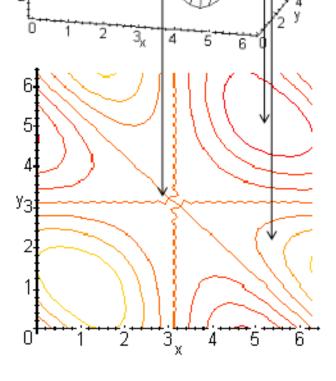






f(x,y) = seno(x) + seno(y) + seno(x + y)





H. R. Alvarez A., Ph. D.

The general optimization problem: the unconstrained non linear optimization problem.

- Maximize f(x)
- Subject to:
 - $g(x) \le c_i i = 1, ..., m$
- Where f and g_i are general functions of $x \in \Re^n \ge 0$
- If f is convex, and g is concave, we have a convex programming problem.

ŀ

Kuhn-Tucker conditions

- To have an otpimal solution, the problem needs to achieve, as necessary, the Kuhn-Tucker conditions:
- Let \(\mathcal{L} \) be the Lagrangian of the maximization function such that:

$$\mathcal{L} = f(\mathbf{x}) + \lambda_1(c_1 - g_1(\mathbf{x})) + \dots + \lambda_m(c_m - g_m(\mathbf{x}))$$

Then it has to accomplish the following:

$$\frac{\partial \mathcal{L}}{\partial x_i} \le 0 \qquad x_i \ge 0 \qquad x_i \frac{\partial \mathcal{L}}{\partial x_i} = 0$$
$$g_j(\mathbf{x}) \le c_j \qquad \lambda_j \ge 0 \qquad \lambda_j(c - g_j(\mathbf{x})) = 0$$

For every i, j. The variable λ_i is known as the Lagrange coefficient for $\mathcal L$

Example

Optimize

$$f(x, y) = xy$$

Subject to:

$$x^2 + y^2 = 1$$

After applying the Lagrangian

$$L = xy + \lambda(x^2 + y^2 - 1)$$

solve 2zx+y=0; x+2zy=0; x^2+y^2-1=0

Input interpretation:

$$2zx + y = 0$$
solve
$$x + 2zy = 0$$

$$x^2 + y^2 - 1 = 0$$

Results:

More digits

$$x = -\frac{1}{\sqrt{2}} \approx -0.707107$$
 and $y = -\frac{1}{\sqrt{2}} \approx -0.707107$ and $z = -\frac{1}{2} \approx -0.500000$

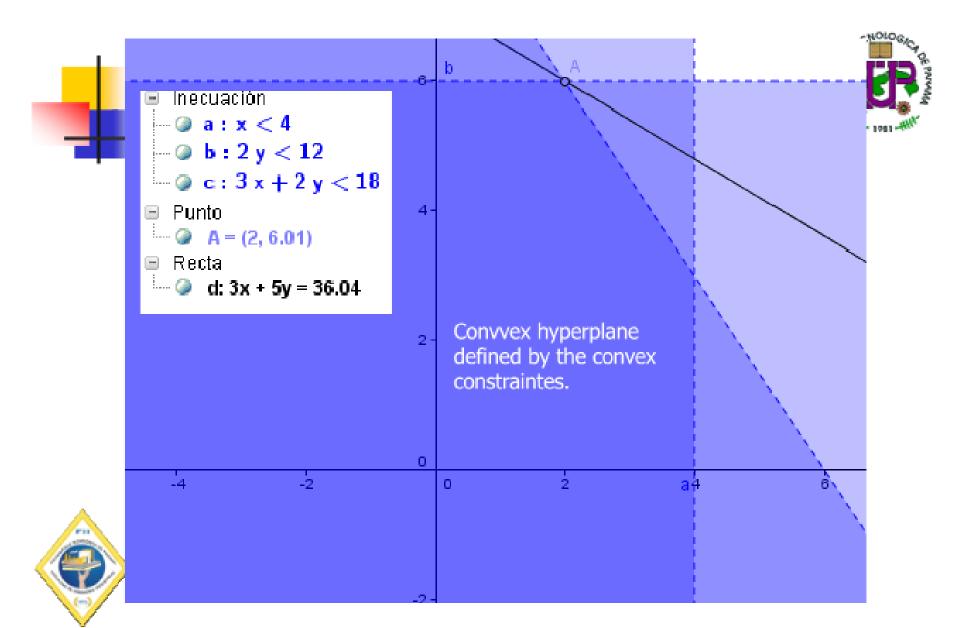
$$x = -\frac{1}{\sqrt{2}} \approx -0.707107$$
 and $y = \frac{1}{\sqrt{2}} \approx 0.707107$ and $z = \frac{1}{2} \approx 0.500000$

$$x = \frac{1}{\sqrt{2}} \approx 0.707107$$
 and $y = -\frac{1}{\sqrt{2}} \approx -0.707107$ and $z = \frac{1}{2} \approx 0.500000$

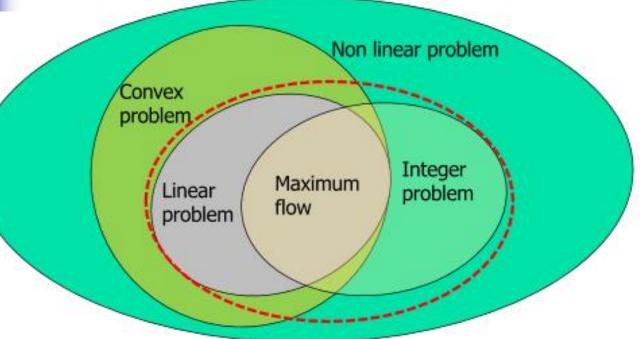
$$x = \frac{1}{\sqrt{2}} \approx 0.707107$$
 and $y = \frac{1}{\sqrt{2}} \approx 0.707107$ and $z = -\frac{1}{2} \approx -0.500000$

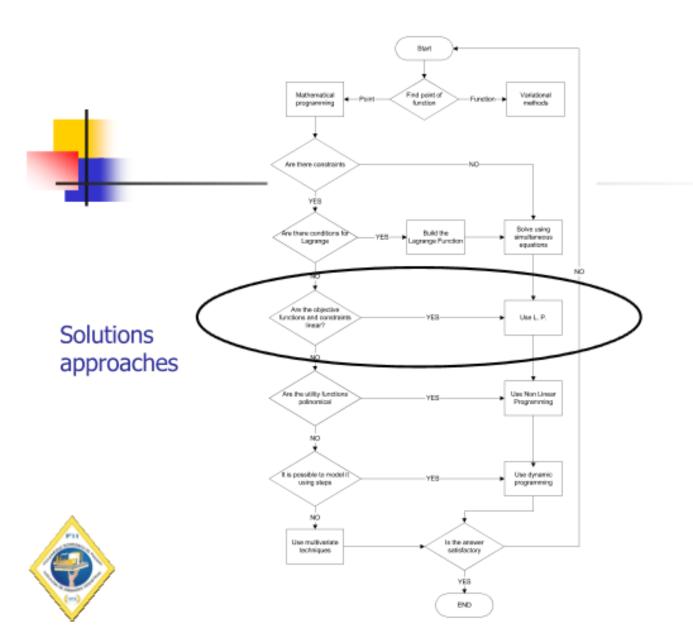
Linear programming

- If f and g_i are lineal and convex, we have a linear programming problem.
- Characteristics:
 - The number of solutions is reduced to a finite number.
 - It is a combinatory problem since all the possible solutions are in the intersections of a convex hyperplane defined by the convex constraints.



Hierarchy of models





How do you solve them?

- Counting all the possible solutions: $\frac{(n-1)!}{2}$
- Finding a "relatively good" solution but with no guarantee that it is the best
- Facing smaller problems being certain that it is possible to find the best solution.
- Using "intelligent search methods" specially in larger problems.

Possible solution methods

- Complete enumeration
- Analytical
- Numerical methods
- Metaheuristics
- Simulation
 - Discrete
 - Continuous
 - Dynamic

Some tools and heuristics

- Simplex
- Karmakar
- Interior Point
- Hungarian Method
- Optimal network
- Taboo Search
- Simulated annealingGenetic algorithms

- Greedy algorithms
- Neural networks
- Fuzzy sets
- Ant colony optimization
- Agent based simulation
- Random search

Formulation of an optimization problem

Three basic components are required

- An economic model representing profits or costs – objective function
- A set of constraints that need to be satisfied to solve the model
- An optimization procedure that will locate the values of the independent variables

An example

- Imagine that you have a 5-week business commitment between City A and City B. You fly out of A on Saturdays and return on Mondays. A regular round-trip ticket costs \$400, but the price is \$ 320 if the dates of the ticket span a weekend. A one-way ticket in either direction costs \$ 300. How should you buy the tickets for the 5-week period?
- This is a decision-making problem which requires answering:
 - What are the decision alternatives?
 - Under what restrictions is the decision made?
 - What is an appropriate objective criterion for evaluating the alternatives?

An example

- Consider the alternatives:
 - Buy five regular A-B-A for departure on Saturday and return on Monday of the same week.
 - Buy one A-B, four B A B that span weekends, and one B-A.
 - Buy one A-B-A to cover Saturday of the first week and Monday of the last week and four B-A-B to cover the remaining legs. All tickets in this alternative span at least one weekend.
- The restriction on these options is that you should be able to leave A on Saturday and return on Monday of the same week.

An example

- The objective criterion for evaluating the proposed alternative is the price of the tickets. The alternative that yields the smallest cost is the best:
 - Alternative 1 cost = 5 X 400 = \$2000
 - Alternative 2 cost 300 + 4 X 320 + 300 = \$1880
 - Alternative 3 cost = 5 X 320 = \$1600
- Choose alternative 3.

