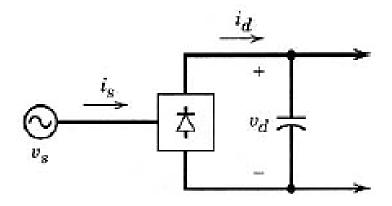
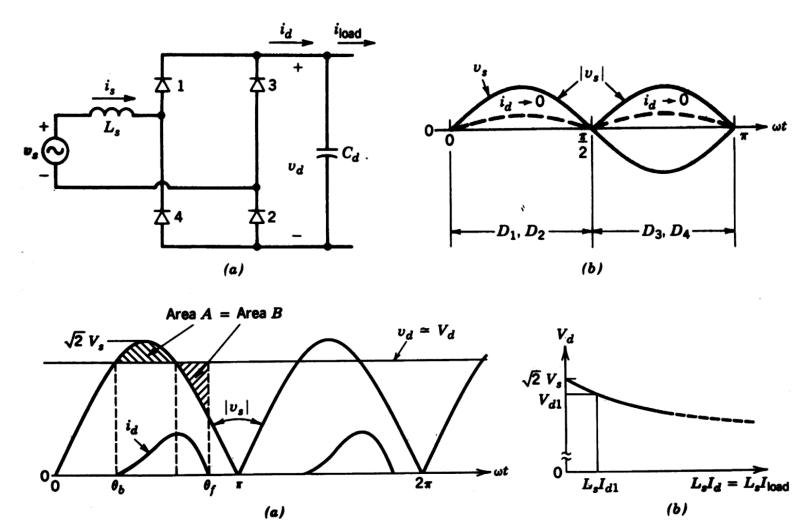
Circuitos Rectificadores

Dra. Victoria Serrano

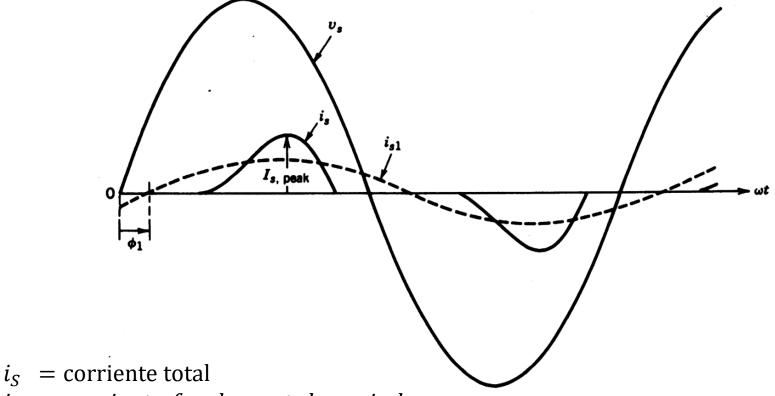

Introducción

- Objetivo: determinar el voltaje de salida para ver cómo estos circuitos afectan la calidad de la energía de la red pública
- Clasificación:
 - Rectificadores no controlados (compuestos por diodos)
 - Rectificadores controlados (compuestos por SCR's)
- ¿Qué se afecta?
 - Factor de potencia
 - Distorsión armónica total de la línea


Rectificadores No-Controlados

- CA→CC no controlada
 - Suministros de energía de conmutación de CC
 - Controles de motores de CA
 - Servocontroles de CC

Rectificador Monofásico



Parámetros de Calidad de Energía

- Factor de potencia (PF)
- Corriente de distorsión (I_{DIS})
- Distorsión armónica total (THD)
- Factor de cresta
- Factor de forma

Formas de onda de corriente y voltaje en un rectificador monofásico

 $i_{S1} = corriente fundamental asociada$

 ϕ_1 = ángulo de desfase entre el voltaje de entrada y la corriente fundamental

Definiciones Básicas

- Fourier: corriente de línea puede ser expresada en términos de la fundamental+otros componentes armónicos.
- Potencia real

$$P = V_S I_{S1} cos \phi_1$$

Potencia aparente

$$S = V_S I_S$$

Factor de potencia

$$PF = \frac{P}{S} = \frac{I_{S1}}{I_S} \cos \phi_1 = \frac{I_{S1}}{I_S} DPF$$

DPF = factor de potencia de desplazamiento

Definiciones Básicas...continuación

Valor rms de la corriente de línea

$$I_{S} = \left[\frac{1}{T} \int_{0}^{T} i_{S}^{2}(t) dt\right]^{\frac{1}{2}} = \left[I_{S1}^{2} + \sum_{h=2}^{\infty} I_{Sh}^{2}\right]^{\frac{1}{2}}$$

Valor rms de la componente de distorsión:

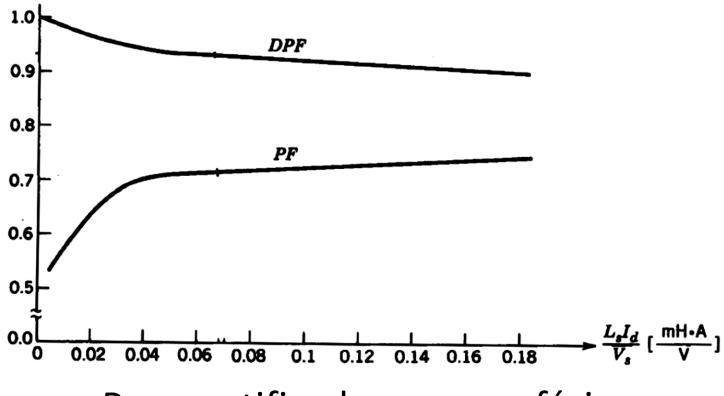
$$I_{dis} = [I_S^2 - I_{S1}^2]^{\frac{1}{2}} = \left[\sum_{h=2}^{\infty} I_{Sh}^2\right]^{\frac{1}{2}}$$

Definiciones Básicas...continuación

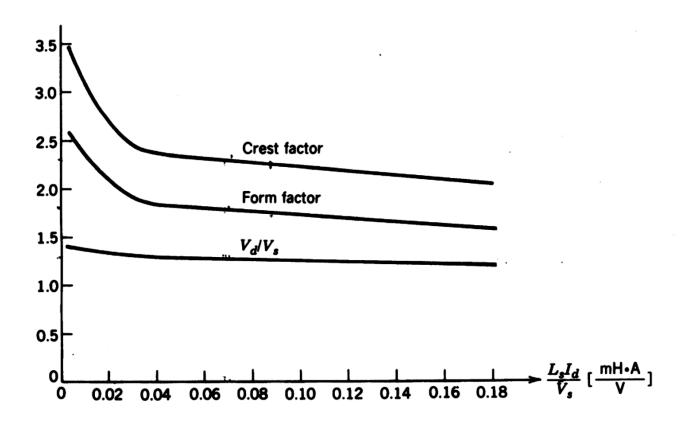
Porcentaje de distorsión armónica total

$$\%THD = 100 \times \frac{I_{dis}}{I_{s1}}$$

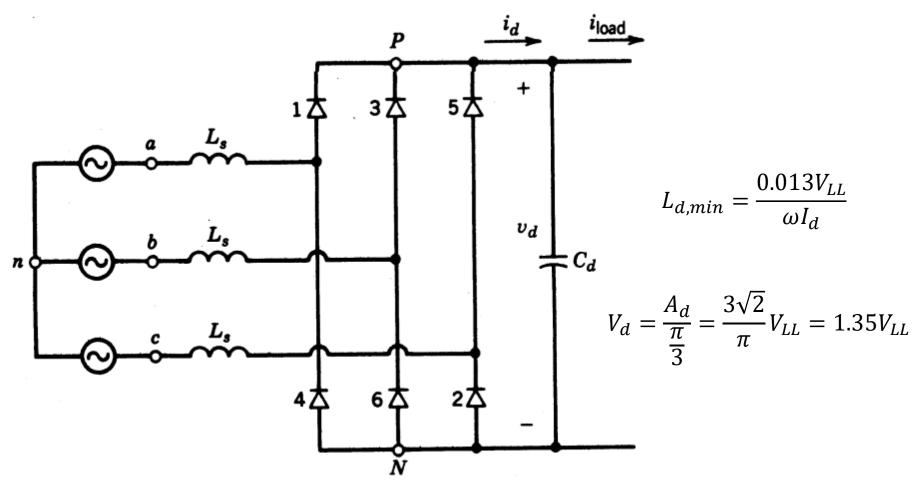
Factor de cresta


Factor de cresta =
$$\frac{I_{S,pico}}{I_S}$$

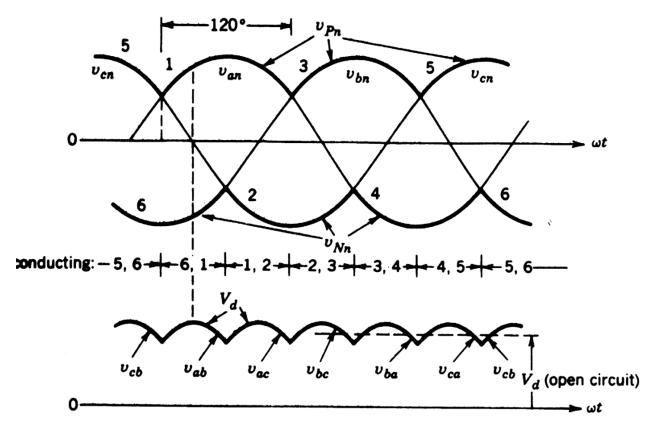
• Factor de forma


Factor de forma =
$$\frac{I_s}{I_d}$$

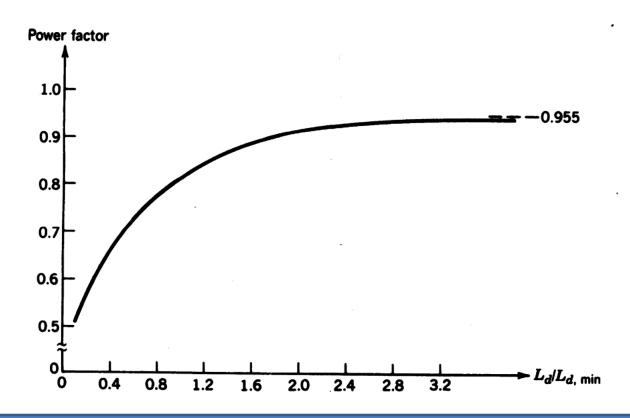
Normalización del Factor de Potencia y Factor de Potencia de Desplazamiento


Factor de cresta, factor de forma y ganancia del rectificador

Para rectificadores monofásicos


Rectificadores Trifásicos

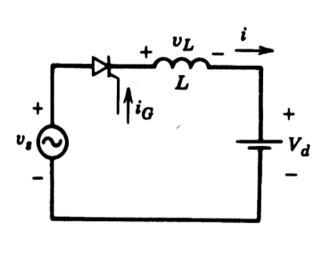
Rectificador de seis pulsos

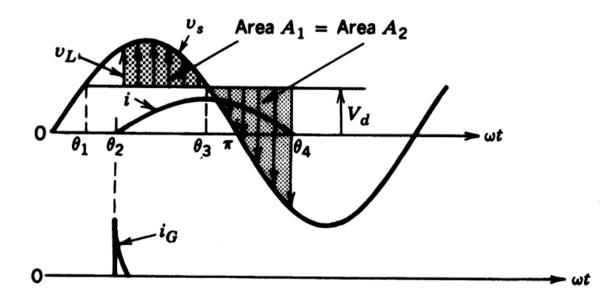

Rectificadores Trifásicos

Forma de onda de un rectificador trifásico sin capacitor de filtro ni corriente de carga

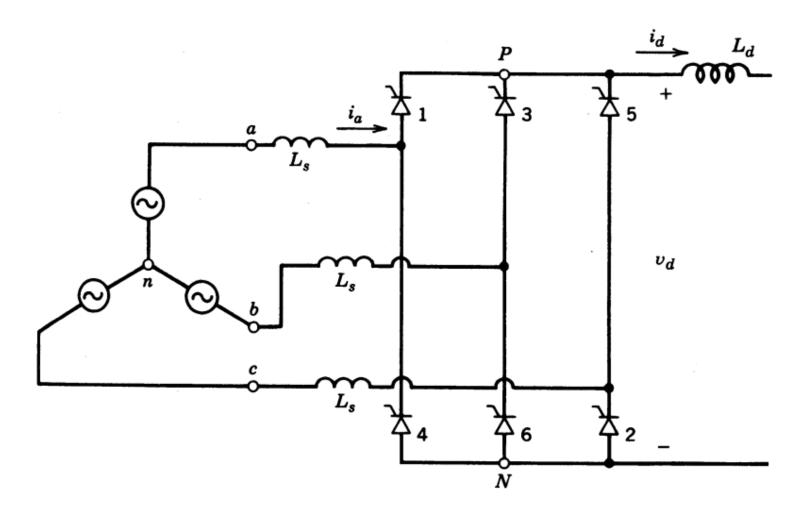
Ventaja del rectificador trifásico

Puede ser controlado el factor de potencia mediante el inductor L_d

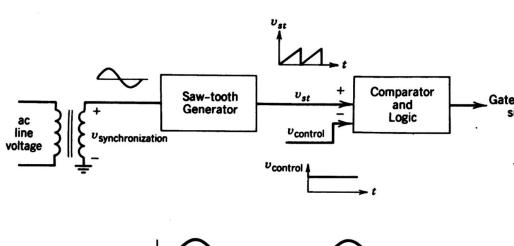


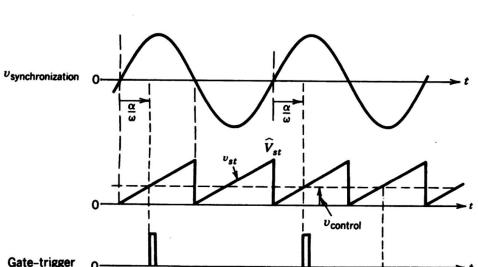

Rectificadores Controlados

- Pueden operar bajo con ángulos de disparo diferentes:
 - Permite variar el voltaje de salida
 - Permite obtener un voltaje de salida negativo (convierte al circuito en un inversor). Sólo pueden trabajar en modo inversor si existe una fuente de energía de corriente alterna
- No se permite invertir el sentido de circulación de la corriente (SCR's son unidireccionales)



Rectificadores Controlados




Circuito Rectificador Trifásico Controlado

Estrategia de control de la compuerta de los SCR del rectificador controlado

$$\alpha = 180^{\circ} \frac{v_{control}}{\widehat{V_{st}}}$$

Voltaje DC:

$$V_{d\alpha} = \frac{3\sqrt{2}}{\pi} V_{LL} cos\alpha = 1.35 V_{LL} cos\alpha$$

$$V_d = \frac{3\sqrt{2}}{\pi} V_{LL} cos\alpha - \frac{3\omega L_s}{\pi} I_d$$

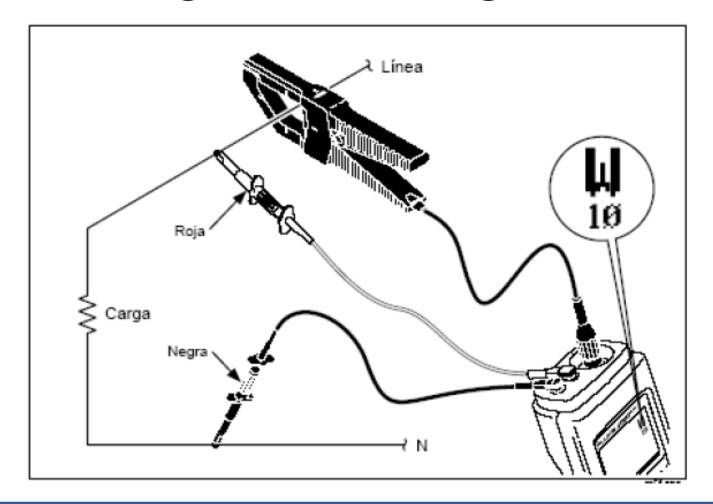
Efecto en el ángulo de conmutación:

$$\cos(\alpha + u) = \cos\alpha - \frac{2\omega L_s}{\sqrt{2}V_{LL}}I_d$$

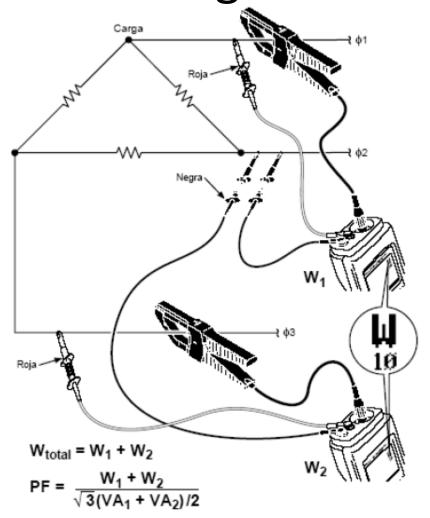
Mediciones

- Medidores de tipo pinzas disponibles:
 - Respuesta promedio
 - Ampliamente utilizadas
 - Usualmente de menor costo
 - Lectura correcta para cargas lineales (motores de inducción estándar, calentadores resistivos, luces incandescentes)
 - No apropiados para cargas no-lineales → leen un valor inferior al verdadero
 - Peores casos:
 - » Controles de velocidad adjustable para pequeños motores (5 HP o menos) conectados a 480V entre dos fases
 - » Calentadores controlados con electrónica de potencia conectados a una fase de 240 V
 - » Computadoras conectadas a 120 V.
 - RMS verdadero

Respuestas a diferentes tipos de formas de onda para amperímetros de tipo RMS promedio y RMS verdadero


Tipo de multímetro	Respuesta a una señal senoidal	Repuesta a una señal cuadrada	Respuesta a un rectificador monofásico	Respuesta a un rectificador trifásico
Respuesta promedio	Correcta	10% mayor	40% menor	5-30% menor
RMS- verdadero	Correcta	Correcta	Correcta	Correcta

Medición con amperímetro RMS promedio vs RMS verdadero



Medición de parámetros relacionados con la energía de una carga monofásica

Medición de parámetros relacionados con la energía en una carga trifásica en delta

Medición de parámetros relacionados con la energía en una carga trifásica en estrella

Símbolos Internacionales de Seguridad

4	TENSION PELIGROSA	\triangle	PRECAUCION ver la explicación en el manual	
\sim	CORRIENTE ALTERNA-CA		Equipo protegido totalmente por AISLAMIENTO DOBLE o	
===	CORRIENTE CONTINUA-CC		AISLAMIENTO REFORZADO	
\sim	DC o CA		RECICLADO	
	TIERRA	•	ENTRADA ALTA DE CONECTOR BNC	

Lineamientos de seguridad para el probador y la punta de tensión

- Evite trabajar sólo
- Inspeccione las sondas de prueba para detectar daños al aislante o metal expuesto. Revise la continuidad de la sonda de prueba con un multímetro. Cambie las sondas dañadas.
- No utilice el probador si presenta daños.
- Al usar las sondas de prueba de tensión, mantenga los dedos lejos de los contactos de las puntas. Mantenga los dedos detrás de las guardas para los dedos en las puntas.
- Tome precauciones al medir tensiones superiores a 60 Vcc 0 30 Vca rms. Estas tensiones representan un peligro de descarga eléctrica.

Lineamientos de seguridad para la punta para corriente alterna

- No utilice nunca la punta de corriente 80i-500s en circuitos con clasificación superior a 600 V. Extreme las precauciones al aprisionar con las mordazas un conductor sin aislante o una barra colectora.
- Mantenga los dedos detrás de la guarda para los dedos de la 80i-500s.

Fluke 80i-500s, Sonda amperimétrica AC (500 A)

Lineamientos de seguridad para la punta para corriente alterna

- Revise las superficies magnéticas de apareamiento de las mandíbulas de la punta; no deben tener polvo, tierra, óxido ni material extraño.
- No utilice una punta de corriente agrietada o dañada o con sondas defectuosas. Si hay una señal de operación defectuosa, cierre la punta con cinta adhesiva para evitar su operación.
- La punta 80i-500s ha sido diseñada y probada en conformidad con IEC 1010-1:1992 y otras normas de seguridad. Observe todas las advertencias para garantizar una operación segura.