!'_ Network Modeling



i Overview

= Networks arise in numerous settings: transportation,
electrical,

= and communication networks , for example.

= Network representations also are widely used for
problems in such diverse areas as production,
distribution, project planning, facilities location,
resource management, and financial planning—to
name just a few examples.

= Network representations provide a powerful visual
and conceptual aid for portraying the relationships
between the components of systems
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i Therminology of networks

= A network consists of a set of points and a
set of /ines connecting certain pairs of the

points. The points are called nodes (or
vertices).

= The lines are called arcs (or links or edges or
branches)

« If flow through an arc is allowed in only one
direction the arc is said to be a directed arc

« If flow through an arc is allowed in either direction
the arc is said to be an undirected arc,
frequently referred to links.



i Therminology of networks

= A network that has only directed arcs is called a
directed network.

= Similarly, if all its arcs are undirected, the network is
said to be an undirected network.

= A network with a mixture of directed and undirected
arcs (or even all undirected arcs) can be converted to
a directed network, if desired, by replacing each
undirected arc by a pair of directed arcs in opposite
directions.

= A path between two nodes is a sequence of distinct
arcs connecting these nodes.




Therminology of network

A directed path from node /to node jis a sequence
of connecting arcs whose direction (if any) is toward
node j, so that flow from node /to node jalong this
path is feasible.

An undirected path from node /to node jis a
sequence of connecting arcs whose direction (if any)
can be eithertoward or away from node J.

A directed path also satisfies the definition of an
undirected path, but not viceversa.

Frequently, an undirected path will have some arcs
directed toward node jbut others directed away.



i Therminology of network

= A path that begins and ends at the same
node is called a cycle.

= In a directed network, a cycle is either a
directed or an undirected cycle, depending on
whether the path involved is a directed or an
undirected path.

= Since a directed path also is an undirected
path, a directed cycle is an undirected cycle.



i Therminology of networks

= TWO hodes are said to be connected if
the network contains at least one
undirected path between them.

= Note that the path does not need to be
directed even if the network is directed.

= A connected network is a network
where every pair of nodes is connected.




Therminology of network

Consider a connected network with 7 nodes where all the arcs
have been deleted.

A “tree” can then be “grown” by adding one arc (or “branch”) at
a time from the original network in a certain way.

Each new arc creates a larger tree, which is a connected
network (for some subset of the 17 nodes) that contains rno
undirected cycles.

Once the (n - 1)st arc has been added, the process stops
because the resulting tree spans (connects) all 7 nodes.

This tree is called a spanning tree, i.e., a connected network
for all n nodes that contains no undirected cycles.

Every spanning tree has exactly n - 1 arcs, since this is the
minimum number of arcs needed to have a connected network
ancI the maximum number possible without having undirected
cycles.



Therminology of network

Arc ca?acity will be the maximum amount of flow
(possibly infinity) that can be carried on a directed
arc.

A supply node (or source node or source) has the
property that the flow out of the node exceeds the
flow /into the node.

The reverse case is a demand node (or sink node
or sink), where the flow /nto the node exceeds

the flow out of the node.

A transshipment node $or intermediate node)
satisfies conservation of flow, so flow in equals flow
out.



i Typical problems

= Minimum Spanning tree

= Minimum cost

= Shortest path

= Maximum Flow

= Traveling salesman problem




i Minimum spanning tree problem

= Given a connected graph G = (V,E), with weight ¢;; for
all edge in E, find a spanning tree G; = (V;, E; ) of
minimum total weight.

= Given the nodes of a network, the potential links and
the positive /ength for each

= Design a network by inserting enough links to satisfy
the requirement that there be a path between every
pair of nodes.

= The objective is to satisfy this requirement in a way that
minimizes the total length of the links inserted into the
network.



Algorithm

Algorithm for the Minimum Spanning Tree Problem.

1.
2.

Select any node arbitrarily, and then connect it (i.e., add a link)
to the nearest distinct node.

Identify the unconnected node that is closest to a connected
node, and then connect these two nodes (i.e., add a link
between them). Repeat this step until all nodes have been
connected.

Tie breaking: Ties for the nearest distinct node (step 1) or the
closest unconnected node ﬁstep 2) may be broken arbitrarily,
and the algorithm must still yield an optimal solution.

1. Such ties are a signal that there may be (but need not be) multiple
optimal solutions.

2. All such optimal solutions can be identified by pursuing all ways
breaking ties to their conclusion.



i Example network in WinQSB
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MPL formulation and solution

minimize

minspanning=20A+50B+40C+2AB+7AD+4BD+3BE+BC+4CE+5DT+7ET+DE;

SUBJECT TO
MIN minspann = 14.8008
0oA+0B+0C+AD+AB+BD+BE+BC+CE+DT+ET+DE=06;
0A+0B+0C>=1;
0A+AB+AD>=1;
0B+AB+BD+BE+BC>=1;
0C+BC+CE>=1;
AD+BD+DE+DT>=1; DECISION UARIABLES
DE+BE+CE+ET>=1;
DT+ET>=1;
PLAIN UARIABLES
BIHARY
On OB OC AD AB BD BE BC CE DT ET DE; . ..
EHD Uariable Hame Activity
Final solution 0n 1.00488
meNMeEmmﬂTuDMmmH&ﬂ| “mmNMeEmmﬂTuDMmmM&ﬂ 0B B.00800
A 2 ! D E ! oc A.00808
A B 2 b B E 3
B = 3 : D T 5 AB 1.0808008
Total Minimal Connected | Distance or Cost = 14 AD B.0800
BD 8.0804aa
BE 1.0808088
{EZ) BC 1.480808
CE 8.000a8
DT 1.080808
ET 8.00080
DE 1.080808
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i The minimum cost flow problem

= It holds a central position among network
optimization models

» It encompasses such a broad class of
applications and because

» It can be solved extremely efficiently

= The most important kind of application of
minimum cost flow problems is to
theoperation of a company’s distribution
network
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i Some applications

Kind of Application

Supply Nodes

Transshipment Nodes

Demand Hodes

Cperation of a
distribution network

solid waste
rmanagernent

Operation of a supply
nebwork

Coordinating produd
mixes at plants

Cash flow
rmanagement

sources of goods

sources of salid
wasde

Yendars

Flants

sources of cash at
a specific tirne

Intermediate storage
facilities

Processing facilities

Intermediate warehouses

Froduction of a spedific
product

shart-term investrment
options

Custarers

Landfill locations

Mrocessing
facilities

hAarket for a
specific product

Meeds for cash at
a spedfic tirne

Hillier and Liebeman (2001)
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Characteristics of the problem

The network is a dlirected and connected network.
At least one of the nodes is a supply node.

At least one of the other nodes is a demand node.
All the remaining nodes are transshipment nodes.

Flow through an arc is allowed only in the direction indicated by the
arrowhead, where the maximum amount of flow is given by the capacity of
that arc. (If flow can occur in both directions, this would be represented by
a pair of arcs pointing in opposite directions.)

The network has enough arcs with sufficient capacity to enable all the flow
generated at the supply nodes to reach all the demand nodes.

The cost of the flow through each arc is proportional to the amount of that
flow, where the cost per unit flow is known.

The objective is to minimize the total cost of sending the available supply
through the network to satisfy the given demand.



Formulation

Consider a directed and connected network where the n nodes include
at least one supply node and at least one demand node. The decision
variables are

Xx; = flow through arci j,
c; = cost per unit flow through arci j,
u; = arc capacity for arci j,
. = net flow generated at node .
The value of b;depends on the nature of node i, where
b, > if node i is a supply node,
b, < if node iis a demand node,
b, = 0If node iis a transshipment node.
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Minimize  Z=5 > gy
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subjact to

Rej — Z g = by, for each node 1,

n n
i=1 =1

and

0= x; = for 2ach are 1 — 7.

The first summation in the node constraints represents the total flow out of node i,
whereas the second summation represents the total flow /nto node i, so the difference is

the netflow generated at this node.

Feasible solutions property: A necessary condition for a minimum cost flow
problem to have any feasible solutions is that

i 'E'-"I' =1,
=1

That is, the total flow being generated at the supply nodes equals the total flow
being absorbed at the demand nodes.
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Example: formulate and solve the following problem

by = [50] [—~20]
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hMinimmize A EJ‘EAE + 43‘@1.5' + 9-7@-&,?_:1 + 33'53.5' + Xp + BJ'E‘r_:E + EJ'EE;_:.,

subject to
Xap + Xaro + Xap — all
—Xap + Xpo = 40
— Rao — Apo + N — [:I
— XA + Xngp — Xgpn = — Al
— Xrp — Xpp + Xpn = —6Il

and

iap =10, xep=80,  all % =0
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MPL formulation and solution

minimize Optimal integer solution found

Flowcost=2AB+4AC+QAD+3BC+CE+DE+2ED

. MIH Flowcost = 49Q.00868
subject to
AB+AC+AD = 5@;
-AB + BC = 48;
-AC-BC+CE = B;
-AD+DE-ED = -38; DECISIOH UARIABLES
-CE-DE+ED=-48;
AB<=18;
CE<=80; PLAIH VARIABLES
integer AB AC AD BC CE DE ED: Uariable Hame Activity Reduced Cost
end AB 0.08000 2.0000
AG 40.06808 4 .980088
AD 10. 086808 9.080088
BC 48.08808 3.8088
CE 80.08808 1.80888
DE 8.0088 1.80888
ED 20.080888 2.0088
Constraint Hame Slack Shadow Price
cl 6.0608008 8.060800
c? 8.00608 8.004808
c3 6.0608008 8.060800
Ccl B.004808 B.00808
(4 6.0608008 8.060800
ch 16.0808068 8.060800
c’f 8.004608 8.4040808
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i The shortest path problem

= Consider an undirected and connected
network with two special nodes called the
origin and the destination.

= Associated with each of the /inks (undirected
arcs) is a nonnegative distance.

= The objective is to find the shortest path (the
path with the minimum total distance) from
the origin to the destination.



Algorithm

Objective of nth iteration: Find the mth nearest node to the origin (to
be repeated for n 1, 2, . . . until the th nearest node is the
destination.

Input for nth iteration: n 1 nearest nodes to the origin (solved for at
the previous iterations),including their shortest path and distance from
the origin. (These nodes, plus the origin, will be called so/lved nodes;
the othersare wnsolved nodes.)

Candidates for nth nearest node: Each solved node that is directly
connected by a link to one or more unsolved nodes provides one
candidate — the unsolved node with the shortest connecting link. (Ties
provide additional candidates.)

Calculation of nth nearest node: For each such solved node and its
candidate, add the distance between them and the distance of the
shortest path from the origin to this solved node.

The candidate with the smallest such total distance is the mth nearest
node (ties provide additional solved nodes), and its shortest path is the
one generating this distance.



i Example network

FomiTo] 0 | A | B | € | D | E | 1
2 5 4

C 4




Solution process

gzr::c::ddten Closest Tptal Nth. closest M|n|mum Last

-1 uncofved unsolved node distance un(sjnlved distance conmection

node node
0 A 2 A 2 0A
8] C 4 C 4 oC
A B 2+2=4 B 4 AB
A D 2+7=9 -
B E 4+3=7 E 7 BE
C E 4+4=8 -
A D 2+7=9 -
B D 4+4=8 D 8 BD
E D 7+1=8 D 8 ED
D T o+5=13 T 13 T
E T 7+7=14 -




O

Final solution

Distances/Cost

Cumulative Distance/Cost

2

2
4
5

P

4

8
13

13
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LP formulation

min Z Z Cij Xy
i b

Subject to
Z Xip— Z v;; = 1 Origin Nodei
ArCE QUT arcs in
Z Xip— Z x;; = 0 Intermediate nodes ¥i,j
ArCE OUT arcsin
Z i Z v;; = 1 Destination nodej
Ares in Ares Aur

For unacceptable route add anew constraint

__ __{ if edge from ito | exists
“ L0 otherwise
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MPL formulation title short_path;
. miLnimiZe

and solution path=20A+50B+40C+2AB+7AD+BC+4BD+3BE+4CE+DE+5DT+7ET;
subject to

0A+0B+0C = 1;

AD+AB-0A = O;

BC+BD+BE-0B-AB = O;

CE-BC-O0C = B;

DT+DE+-AD-BD = B;

ET-BE-CE-DE=8;

DT+DE = 1;
binary
0aA OB OC AB AD BC BD BE CE DE DT ET;
end
Optimal integer solution found
PLAIH COHSTRAIHNTS
'ECISTON UARIABLES Constraint Hame Slack Shadow Price
‘LiailH UARIABLES cl 0.8000 0.8000
c? a.884808 a.884808
. .. c3 A.884808 A.884808
VJariable Hame Activity Reduced Gost ch 0.0060 0.0060
______________________________________________________ ct A.06880 A.06880
on 1.00888 2.0088 ch 0. 6088 0. 6088
0B 8.0080 L .004806 c7 f.0680 f.0680
oc 8.0080 Y 9990  ______
AB 1.00080 2.080080
ab a.08888 7_.8888 From To | Distance/Coszt | Cumulative Distance/Cost |
BC 8.088808 1.0880808 A 2 2
BD 1.0008 4.0008 A B 2 4
BE 8.0000 3.0000 g ? ; E
CE g.0088 4. 0088
DE 0.0000 1.0000 From 0 ToT = 13
DT 1.080080 L .00809
ET 8.0080 ¥ .00080
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The maximum flow problem

For all flow through a directed and connected network
originates at one node, called the source, and terminates at
one other node, called the sink.

All the remaining nodes are transshipment nodes.

Flow through an arc is allowed only in the direction indicated by
the arrowhead, where the maximum amount of flow is given by
the capacity of that arc.

At the source, all arcs point away from the node. At the sink, all
arcs point into the node.

The objective is to maximize the total amount of flow from the
source to the sink.

This amount is measured in either of two equivalent ways,
namely, either the amount /eaving the source or the amount
entering the sink.



algorithm

i The algorithm: the augmented path

= It is based on two intuitive concepts, a
residual network and an augmenting path.

= The residual network is the remaining arc
capacity (called residual capacity) for
assigning additional flows. Whenever some
amount of flow is assigned to an arc, that
amount is subtracted from the residual
capacity in the same direction and added to
the residual capacity in the opposite direction.



algorithm

i The algorithm: the augmented path

= An augmenting path is a directed path from the
source to the sink in the residual network such that
every arc on this path has strictly positive residual
capacity.

= The minimum of these residual capacities is called
the residual capacity of the augmenting path because
it represents the amount of flow that can feasibly be
added to the entire path.

= Therefore, each augmenting path provides an
opportunity to further augment the flow through the
original network.



The algorithm: the augmented path
i algorithm

= The augmenting path algorithm repeatedly selects
some augmenting path and adds a flow equal to its
residual capacity to that path in the original network.

= This process continues until there are no more
augmenting paths, so the flow from the source to the
sink cannot be increased further.

= The key to ensuring that the final solution necessarily
is optimal is the fact that augmenting paths can
cancel some previously assigned flows in the original
network, so an indiscriminate selection of paths for
assigning flows cannot prevent the use of a better
combination of flow assignments.



The algorithm: the augmented path
algorithm

. Identify an augmenting path by finding some directed path
from the source to the sink in the residual network such that
every arc on this path has strictly positive residual capaci’al. (If
no augmenting path exists, the net flows already assigne
constitute an optimal flow pattern.)

. Identify the residual cafpacity c* of this augmenting path by
finding the minimum of the residual capacities of the arcs on
this path. Increase the flow in this path by c*.

. Decrease by c* the residual capacity of each arc on this
augmenting path. Increase by c* the residual capacity of each
arc in the opposite direction on this augmenting path.

. Return to step 1.



i Network example




lteration 1: In Fig. 9.7, one of several augmenting paths 18 O — 8 — £ — [, which
has a residual capacity of min{7, 35, 6} = 5. By as=zigning a flow of 3 to this path, the re-
sulting residual network 1s

0

"

lteration 2: Assign a flow of 3 to the angmenting path ) — A — ) — T. The re-
sulting residual network is




fteration 4: Assign a flow of 2 to the augmenting path - B — ) — T. The re-
sulting residual network 1=

11

11

N
1
fteration 5: Assign a flow of 1 to the augmenting path 0 - C = F—= 0D = T.

fteration 6 Assign a flow of 1 to the augmenting path @ — C — FE — T. The re-
sulting residual network is

€53

lreration 7 Assign a flow of 1 to the augmenting path? - C—=F—=B—-D —T.
The resulting residual network is



[teration / Assign a tlow of | to the augmenting path ) — C — E— B — 1) — .
The resulting residual network is

14

5 K

There are no more augmenting paths, so the current flow pattern 1s optimal.

Optimal solution




Alternate solution in QSB

From | To |[MetFlow| |From|To|Met Flow
A 3 b B E 3
0 B 7 f LC E 4
0 C 4 8 D T 8
A D 3 9 E D 1
B D 4 10 E T b
[MetFlow From 0O To T | = 14




LP formulation

max F

Z x;; — £ = 0 at Origin

arcs our

Z Xip— Z v;; = 0 Intermediate nodes i

arcs our arcsin

Z ©;; — F = 0 at Destinations
arcs in

xi; = fi; ¥ nodes

v, =0

i]
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MPL formulation and solution

title max_flow;

maxXimize

subject

integer

Flow = F;

to
OA+DB+0C-F=8;
AD+AB-0A=9;
BC+BD+BE-0OB-AB=0;
CE-BC-0GC=8;
DT-AD-BD-ED=8;
ET+ED-CE-BE=8;
DT+ET-F=08;
0DA<=5;

0B<=7;

0c<=4;

AB<=1;

BC<=2;

AD<=3;

BD<=4;

BE<=5;

CE<=4;

DT<=9;

ED<=1;

ET<=6;

SO0LUTION RESULT

Optimal integer solution found

MAX Flow = 14.8888

DECISION UARIABLES

PLAIH UVARIABLES
Variable Hame Activity Reduced Cost
F 1408088 B_0a88
oA 4._0488 1.00688
oB f.0aaa 1.00688
oc 3.0088 1.00688
AD 3.0088 B.0a88
] 1.00888 B.0a88
BC 8.084888 8.080889
BD 4 .080080 8.80084
BE 4 .080080 8.80084
CE J.00080 f.0000
DT 8.0000 f.0000
ED 1.00880 f.0080
ET 6.080880 f.0080
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Traveling salesman problem (TSP)

It is an NP-hard problem in combinatorial optimization
studied in operations research and theoretical computer
science.

Given a list of cities and their pairwise distances, the task
is to find a shortest possible tour that visits each city
exactly once.

The problem was first formulated as a mathematical
problem in 1930 and is one of the most intensively studied
problems in optimization.

It is used as a benchmark for many optimization methods.

Even though the problem is computationally difficult, a
large number of heuristics and exact methods are known,
so that some instances with tens of thousands of cities can
be solved.



As a network problem

= TSP can be modeled as an undirected weighted
graph, such that cities are the graph's vertices, paths
are the graph's edges, and a path's distance is the
edge's length.

= In the symmetric TSP, the distance between two
cities is the same in each opposite direction, forming
an undirected graph. This symmetry halves the
number of possible solutions.

= In the asymmetric TSP, paths may not exist in both
directions or the distances might be different,
forming a directed graph.



Network example: A symmetric network

From \ To 0 | A | B | C | D | E | T




One possible solution

11-21-2010| From Hode | Connect To | Distance.ﬂ'[ﬁustl | From Hode | Connect To | Distance/Cost

1 1] ' A 4 i B C Fi
2 A E 3 6 C T 8
3 E D 5 ¥ T 1] 4
4 D B 5

Total Minimal Traveling Diztance or Cost = 36

[Result from Mearest Meighbor | Heuristic]
r EI 1 2 3

(/{0
5




‘-L Network example: asymmetric

555555

?????

[ = M




A possible solution

11-21-2010( From Mode | Connect To | Distance/Cost From Hode | Connect To | Distance/Cost

I - o A 5 5 E T 6
2 A B 1 b T D M
3 B C 2 Fi D 0 M
4 C E 4 C
Total Minimal Traveling Distance or Cost = M

[Result from Mearest Meighbor  Heuristic]

1 | 2 | a | 4 5 Final Solut




i A generalized formulation

Minimize

Zrsp(U)= 2. 2. 2CisiUisUjsu

sel 1eM je(Myi})

Subject to:

Sus, = | seS
ieM

Sui, = 1 ieM
seS

uis; € {0,1} ieM; seS

H. R. Alvarez A., Ph. D.



